2 resultados para Bovino - Semen
em Helda - Digital Repository of University of Helsinki
Resumo:
Seminal plasma (SP) is the fluid portion of semen, secreted by the epididymides and the accessory glands before and during ejaculation. The stallion s ejaculate is a series of jets that differ in sperm concentration, semen volume and biochemical composition. Before the actual ejaculation, a clear and watery pre-sperm fluid is secreted. The first three jets form the sperm-rich fractions, and contain ¾ of the total number of sperm. The semen volume and sperm concentration in each of the jets decrease towards the end of the ejaculation, and the last jets are sperm-poor fractions with a low sperm concentration. The aims of these studies were to examine the effects of the different SP fractions, and the presence of SP, on sperm survival during storage. Pre-sperm fluid, and semen fractions with a high (sperm-rich) and low (sperm-poor) sperm concentration were collected in five experiments. The levels of selected enzymes, electrolytes and proteins in different SP fractions were determined. These studies also aimed at assessing the individual variation in the levels of the selected SP components and in the effects of SP on spermatozoa. The association between the components of SP and semen quality, sperm longevity, and fertility was examined with a stepwise linear regression analysis. Compared to samples containing SP during storage, centrifugation and the subsequent removal of SP reduced sperm motility parameters during 24 h of cooled storage in all SP fractions, but sperm membrane integrity was not affected. Some of the measured post-thaw motility parameters were also higher in samples containing SP compared to samples stored without SP. In contrast, the proportion of DNA-damaged spermatozoa was greater in the samples stored with SP than those without SP, and this effect was seen in both sperm-rich and sperm-poor fractions. There were no differences in DNA integrity between fractions stored with SP, but the sperm-rich fraction showed less DNA damage than the sperm-poor fraction after SP removal. The differences between fractions in sperm motility after cooled storage were non-significant. The levels of alkaline phosphatase, acid phosphatase and β-glucuronidase were higher in the sperm-rich fractions compared to the sperm-poor fractions, while the concentrations of calcium and magnesium were higher in sperm-poor fractions than in sperm-rich fractions. The concentrations of sodium and chloride were highest in pre-sperm fluid. In the sperm-poor fraction, the level of potassium was associated with the maintenance of sperm motility during storage. The levels of alkaline and acid phosphatase were associated with sperm concentration and the total number of spermatozoa in the ejaculates. None of the measured SP components were correlated to the first cycle pregnancy rate. In summary, the removal of SP improved DNA integrity after cooled storage compared with samples containing SP. There were no differences in the maintenance of sperm motility between the sperm-rich and sperm-poor fractions and whole ejaculates during cooled storage, irrespective of the presence of SP. The lowest rate of DNA damage was found in the sperm-rich fractions stored without SP. In practice, the results presented in this thesis support the use of individual modifications of semen processing techniques for cooled transported semen from subfertile stallions.
Resumo:
Maintenance of breeding efficiency and high semen quality is essential for reproductive success in farm animals. Early recognition of possible inheritable factors causing infertility requires constant attention. This thesis focuses on describing different manifestations of impaired spermatogenesis, their impact on fertility and partly also their incidence in populations. The reasons for spermatogenic failure are various. An interruption of germ cell differentiation, spermatogenic arrest, can lead to infertility. The incidence of azoospermia was investigated in the 1996 2005 survey of Finnish AI and farm breeding boars. We focused on the diagnosis, testicular morphometry and the possible reasons for the condition. The incidence of azoospermia was significantly higher in Yorkshire boars than in the Landrace breed. The most common diagnosis in Yorkshire boars was germ cell arrest at the primary spermatocyte level. The second most frequent diagnosis in Yorkshire boars was segmental aplasia of the Wolffian ducts with idiopathic epididymal obstruction. Other reasons for azoospermia were infrequent. In the second study we investigated the incidence of two relatively well-defined specific sperm defects in Finnish Yorkshire and Landrace boars during the same survey, the immotile short-tail sperm (ISTS) defect and the knobbed acrosome (KA) defect. In the Finnish Yorkshire boars the inherited ISTS defect, and the probably inherited KA defect, were important causes of infertility during 1996 2005. The ISTS defect was found in 7.6% and the KA defect in 0.8% of the Yorkshire boars. No Landrace boars were diagnosed with either of these two defects. In the third study we described a new sterilizing sperm defect in an oligoasthenoterazoospermic bull. Because of its morphological characteristics this defect was termed the multinuclear-multiflagellar sperm (MNMFS) defect. The number of Sertoli cells in the seminiferous tubuli was highly increased in the MNMFS bull compared with the number in normal bulls. In the following two studies we used a combined approach of fluorescence in situ hybridization (FISH), flow cytometry and morphometric studies to provide information on the cytogenetic background of macrocephalic bull spermatozoa. We described cellular features of diploid spermatozoa and compared the failures in the first and second meiotic divisions. In the last study we describe how the transplantation of testicular cells was used to determine whether spermatogonia derived from donor animals are able to colonize and produce motile spermatozoa in immune-competent unrelated boars suffering the ISTS defect. Transplantation resulted in complete focal spermatogenesis, indicated by the appearance of motile spermatozoa and confirmed by genotyping.