29 resultados para Biology, Genetics|Biology, Microbiology

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Book Review

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new classification and linear sequence of the gymnosperms based on previous molecular and morphological phylogenetic and other studies is presented. Currently accepted genera are listed for each family and arranged according to their (probable) phylogenetic position. A full synonymy is provided, and types are listed for accepted genera. An index to genera assists in easy access to synonymy and family placement of genera.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Throughout the history of the classification of extant ferns (monilophytes) and lycophytes, familial and generic concepts have been in great flux. For the organisation of lycophytes and ferns in herbaria, books, checklists, indices and spore banks and on the internet, this poses a problem, and a standardized linear sequence of these plants is therefore in great need. We provide here a linear classification to the extant lycophytes and ferns based on current phylogenetic knowledge; this provides a standardized guide for organisation of fern collections into a more natural sequence. Two new families, Diplaziopsidaceae and Rhachidosoraceae, are here introduced.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by age of onset at 6-15 years, stimulus-sensitive myoclonus, tonic-clonic epileptic seizures and a progressive course. Mutations in the cystatin B (CSTB) gene underlie EPM1. The most common mutation underlying EPM1 is a dodecamer repeat expansion in the promoter region of CSTB. In addition, nine other mutations have been identified. CSTB, a cysteine protease inhibitor, is a ubiquitously expressed inhibitor of cathepsins, but its physiological function is unknown. The purpose of this study was to investigate CSTB gene expression and CSTB protein function in normal and pathological conditions. The basal CSTB promoter was mapped and characterized using different promoter-luciferase gene constructs. The binding activity of transcription factors to one ARE half, five Sp1 and four AP1 sites in the CSTB promoter was demonstrated. The CSTB promoter activity was clearly decreased using a CSTB promoter with "premutation" repeat expansions and in individuals with alike expansions. The expression of CSTB mRNA and protein was markedly reduced in patient cells. The endogenous CSTB protein localized to the nucleus, cytoplasm and lysosomes, and in differentiated cells merely to the cytoplasm. This suggests that the subcellular distribution of CSTB is dependent on the differentation status of the cells. The proteins representing patient missense mutations failed to associate with lysosomes, implying the importance of the lysosomal association for the proper physiological function of CSTB. Several alternatively spliced CSTB isoforms were identified. Of these CSTB2 was widely expressed with very low levels whereas the other alternatively spliced forms seemed to have limited tissue expression. In patients CSTB2 expression was reduced similarly to that of CSTB. The physiological relevance of CSTB alternative splicing remains unknown. The mouse Cstb transcript was shown to be present in all embryonic stages and adult tissues examined. The expression was highest at embryonic day 7 and in thymus, as well as in postnatal brain in the cortex, caudate putamen, thalamus, hippocampus, and in the Purkinje cell layer of the cerebellum. Our data implies that CSTB expression is tightly temporally and spatially regulated. The data presented in my thesis lay the basis for further understanding of the role of CSTB in health and disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recently it has been recognized that evolutionary aspects play a major role in conservation issues of a species. In this thesis I have combined evolutionary research with conservation studies to provide new insight into these fields. The study object of this thesis is the house sparrow, a species that has features that makes it interesting for this type of study. The house sparrow has been ubiquitous almost all over the world. Even though being still abundant, several countries have reported major declines. These declines have taken place in a relatively short time covering both urban and rural habitats. In Finland this species has declined by more than two thirds in just over two decades. In addition, as the house sparrow lives only in human inhabited areas it can also raise public awareness to conservation issues. I used both an extensive museum collection of house sparrows collected in 1980s from all over Finland as well as samples collected in 2009 from 12 of the previously collected localities. I used molecular techniques to study neutral genetic variation within and genetic differentiation between the study populations. This knowledge I then combined with data gathered on morphometric measurements. In addition I analyzed eight heavy metals from the livers of house sparrows that lived in either rural or urban areas in the 1980s and evaluated the role of heavy metal pollution as a possible cause of the declines. Even though dispersal of house sparrows is limited I found that just as the declines started in 1980s the house sparrows formed a genetically panmictic population on the scale of the whole Finland. When compared to Norway, where neutral genetic divergence has been found even with small geographic distances, I concluded that this difference would be due to contrasting landscapes. In Finland the landscape is rather homogeneous facilitating the movements of these birds and maintaining gene flow even with the low dispersal. To see whether the declines have had an effect on the neutral genetic variation of the populations I did a comparison between the historical and contemporary genetic data. I showed that even though genetic diversity has not decreased due to the drastic declines the populations have indeed become more differentiated from each other. This shows that even in a still quite abundant species the declines can have an effect on the genetic variation. It is shown that genetic diversity and differentiation may approach their new equilibriums at different rates. This emphasizes the importance of studying both of them and if the latter has increased it should be taken as a warning sign of a possible loss of genetic diversity in the future. One of the factors suggested to be responsible for the house sparrow declines is heavy metal pollution. When studying the livers of house sparrows from 1980s I discovered higher levels of heavy metal concentrations in urban than rural habitats, but the levels of the metals were comparatively low and based on that heavy metal pollution does not seem to be a direct cause for the declines in Finland. However, heavy metals are known to decrease the amount of insects in urban areas and thus in the cities heavy metals may have an indirect effect on house sparrows. Although neutral genetic variation is an important tool for conservation genetics it does not tell the whole story. Since neutral genetic variation is not affected by selection, information can be one-sided. It is possible that even neutral genetic differentiation is low, there can be substantial variation in additive genetic traits indicating local adaptation. Therefore I performed a comparison between neutral genetic differentiation and phenotypic differentiation. I discovered that two traits out of seven are likely to be under directional selection, whereas the others could be affected by random genetic drift. Bergmann s rule may be behind the observed directional selection in wing length and body mass. These results highlight the importance of estimating both neutral and adaptive genetic variation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Torque teno virus (TTV) was discovered in 1997 in the serum of a Japanese patient who had a post-transfusion hepatitis of unknown etiology. It is a small virus containing a circular single-stranded DNA genome which is unique among human viruses. Within a few years after its discovery, the TTVs were noted to form a large family of viruses with numerous genotypes. TTV is highly prevalent among the general population throughout the world, and persistent infections and co-infections with several genotypes occur frequently. However, the pathogenicity and the mechanism for the sustained occurrence of the virus in blood are at present unclear. To determine the prevalence of TTV in Finland, we set up PCR methods and examined the sera of asymptomatic subjects for the presence of TTV DNA and for genotype-6 DNA. TTV was found to be highly prevalent also in Finland; 85% of adults harbored TTV in their blood, and 4% were infected with genotype-6. In addition, TTV DNA was detected in a number of different tissues, with no tissue-type or symptom specificity. Most cell-biological events during TTV infections are at the moment unknown. Replicating TTV DNA has, however, been detected in liver and the hematopoietic compartment, and three mRNAs are known to be generated. To characterize TTV cell biology in more detail, we cloned in full length the genome of TTV genotype 6. We showed that in human kidney-derived cells TTV produces altogether six proteins with distinct subcellular localizations. TTV mRNA transcription was detected in all cell lines transfected with the full-length clone, and TTV DNA replicated in several of them, including those of erythroid, kidney, and hepatic origin. Furthermore, the viral DNA replication was shown to utilize the cellular DNA polymerases. Diagnoses of TTV infections have been based almost solely on PCR, whereas serological tests, measuring antibody responses, would give more information on many aspects of these infections. To investigate the TTV immunology in more detail, we produced all six TTV proteins for use as antigens in serological tests. We detected in human sera IgM and IgG antibodies to occur simultaneously with TTV DNA, and observed appearance of TTV DNA regardless of pre-existing antibodies, and disappearance of TTV DNA after antibody appearance. The genotype-6 nucleotide sequence remained stable for years within the infected subjects, suggesting that some mechanism other than mutations is used by this minute virus to evade our immune system and to establish chronic infections in immunocompetent subjects.