13 resultados para BCR-ABL KINASE

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a malignant clonal blood disease that originates from a pluripotent hematopoietic stem cell. The cytogenetic hallmark of CML, the Philadelphia chromosome (Ph), is formed as a result of reciprocal translocation between chromosomes 9 and 22, which leads to a formation of a chimeric BCR-ABL fusion gene. The BCR-ABL protein is a constitutively active tyrosine kinase that changes the adhesion properties of cells, constitutively activates mitogenic signaling, enhances cell proliferation and reduces apoptosis. This results in leukemic growth and the clinical disease, CML. With the advent of targeted therapies against the BCR-ABL fusion protein, the treatment of CML has changed considerably during the recent decade. In this thesis, the clinical significance of different diagnostic methods and new prognostic factors in CML have been assessed. First, the association between two different methods for measuring CML disease burden (the RQ-PCR and the high mitotic index metaphase FISH) was assessed in bone marrow and peripheral blood samples. The correlation between positive RQ-PCR and metaphase FISH samples was high. However, RQ-PCR was more sensitive and yielded measurable transcripts in 40% of the samples that were negative by metaphase FISH. The study established a laboratory-specific conversion factor for setting up the International Scale when standardizing RQ-PCR measurements. Secondly, the amount of minimal residual disease (MRD) after allogeneic hematopoietic stem cell transplantation (alloHSCT) was determined. For this, metaphase FISH was done for the bone marrow samples of 102 CML patients. Most (68%), had no residual cells during the entire follow-up time. Some (12 %) patients had minor (<1%) MRD which decreased even further with time, whereas 19% had a progressive rise in MRD that exceeded 1% or had more than 1% residual cells when first detected. Residual cells did not become eradicated spontaneously if the frequency of Ph+ cells exceeded 1% during follow-up. Next, the impact of deletions in the derivative chromosome 9, was examined. Deletions were observed in 15% of the CML patients who later received alloHSCT. After alloHSCT, there was no difference in the total relapse rate in patients with or without deletions. Nor did the estimates of overall survival, transplant-related mortality, leukemia-free survival and relapse-free time show any difference between these groups. When conventional treatment regimens are used, the der(9) status could be an important criterion, in conjunction with other prognostic factors, when allogeneic transplantation is considered. The significance of der(9) deletions for patients treated with tyrosine kinase inhibitors is not clear and requires further investigation. In addition to the der(9) status of the patient, the significance of bone marrow lymphocytosis as a prognostic factor in CML was assessed. Bone marrow lymphocytosis during imatinib therapy was a positive predictive factor and heralded optimal response. When combined with major cytogenetic response at three months of treatment, bone marrow lymphocytosis predicted a prognostically important major molecular response at 18 months of imatinib treatment. Although the validation of these findings is warranted, the determination of the bone marrow lymphocyte count could be included in the evaluation of early response to imatinib treatment already now. Finally, BCR-ABL kinase domain mutations were studied in CML patients resistant against imatinib treatment. Point mutations detected in the kinase domain were the same as previously reported, but other sequence variants, e.g. deletions or exon splicing, were also found. The clinical significance of the other variations remains to be determined.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is one of the most studied human malignancies. It is caused by an autonomously active tyrosine kinase BCR-ABL, which is a result from a translocation between chromosomes 9 and 22 in the hematopoietic stem cell. As an outcome, a Philadelphia (Ph) chromosome is formed. BCR-ABL causes disturbed cell proliferation among other things. Although targeted tyrosine kinase inhibitor therapy has been developed in the beginning of the millenium and the survival rate has increased significantly, it is still not known why some patients benefit more from the treatment than others. Furthermore, the therapy is not considered to be curative. Before the era of tyrosine kinase inhibitors, the first-line treatment for CML was interferon-? (IFN-?). However, only a small proportion of patients benefitted from the treatment. Of these patients, a few were able to discontinue the treatment without renewal of the disease. The mechanism of IFN-? is not completely understood, but it is believed that differences in the immune system can be one of the reasons why some patients have better therapy response. Kreutzman, Rohon et al. have recently discovered that patients who have been able to stop IFN-? treatment have an increased number of NK- and T-cells. They also have a unique clonal T-cell population and more cytotoxic CD8+ T-cells and less CD4+ T-cells. The aim of this master’s thesis was to study the function of T- and NK-cells in IFN-? treated patients. Although it was shown earlier that IFN-? treated patients have increased NK-cell count, the function of these cells was unknown. Therefore, we have now investigated the killing potential of patients’ NK-cells, their activation status and cell surface antigen expression. In addition, we have also studied the activation status of patients’ T-cells and their cytotoxic properties. We observed that NK-cells from patients treated with IFN-? are unable to kill leukemic cells (K562) than NK-cells from healthy controls. In addition, patients on IFN-? treatment have more active T-cells and their NK-cells have an undifferentiated immunoregulatory phenotype. Patients that have been able to stop the treatment have anergic T-and NK-cells. As a conclusion our results suggest that IFN-? therapy induces increased NK-cell count, NK-cell immunoregulatory functions and more active T-cells. After stopping IFN-? therapy, NK- and T-cells from CML patients restore anergy typical for CML.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein kinases (PKs) belong to the largest single family of enzymes, phosphotransferases, which catalyze the phosphorylation of other enzymes and proteins and function primarily in signal transduction. Consequently, PKs regulate cell mechanisms such as growth, differentiation, and proliferation. Dysfunction of these cellular mechanisms may lead to cancer, a major predicament in health care. Even though there is a range of clinically available cancer-fighting drugs, increasing number of cancer cases and setbacks such as drug resistance, constantly keep cancer research active. At the commencement of this study an isophthalic acid derivative had been suggested to bind to the regulatory domain of protein kinase C (PKC). In order to investigate the biological effects and structure-activity relationships (SARs) of this new chemical entity, a library of compounds was synthesized. The best compounds induced apoptosis in human leukemia HL-60 cells and were not cytotoxic in Swiss 3T3 fibroblasts. In addition, the best apoptosis inducers were neither cytotoxic nor mutagenic. Furthermore, results from binding affinity assays of PKC isoforms revealed the pharmacophores of these isophthalic acid derivatives. The best inhibition constants of the tested compounds were measured to 210 nM for PKCα and to 530 nM for PKCδ. Among natural compounds targeting the regulatory domain of PKC, the target of bistramide A has been a matter of debate. It was initially found to activate PKCδ; however, actin was recently reported as the main target. In order to clarify and to further study the biological effects of bistramide A, the total syntheses of the natural compound and two isomers were performed. Biological assays of the compounds revealed accumulation of 4n polyploid cells as the primary mode of action and the compounds showed similar overall antiproliferative activities. However, each compound showed a distinct distribution of antimitotic effect presumably via actin binding, proapoptotic effect presumably via PKCδ, and pro-differentiation effect as evidenced by CD11b expression. Furthermore, it was shown that the antimitotic and proapoptotic effects of bistramide A were not secondary effects of actin binding but independent effects. The third aim in this study was to synthesize a library of a new class of urea-based type II inhibitors targeted at the kinase domain of anaplastic lymphoma kinase (ALK). The best compounds in this library showed IC50 values as low as 390 nM for ALK while the initial low cellular activities were successfully increased even by more than 70 times for NPM-ALK- positive BaF3 cells. More importantly, selective antiproliferative activity on ALK-positive cell lines was achieved; while the best compound affected the BaF3 and SU-DHL-1 cells with IC50 values of 0.5 and 0.8 μM, respectively, they were less toxic to the NPM-ALK-negative human leukemic cells U937 (IC50 = 3.2 μM) and BaF3 parental cells (IC50 = 5.4 μM). Furthermore, SAR studies of the synthesized compounds revealed functional groups and positions of the scaffold, which enhanced the enzymatic and cellular activities.