2 resultados para Artemisia frigida
em Helda - Digital Repository of University of Helsinki
Resumo:
The seasonal occurrence of sea ice that annually covers almost half the Baltic Sea area provides a unique habitat for halo- and cold temperature-tolerant extremophiles. Baltic Sea ice biology has more than 100 years of tradition that began with the floristic observation of species by the early pioneers using light microscopic techniques that were the only thing available at the time. Since the discovery of life within sea ice, more technologies have become available for taxonomy. Electron microscopy and genetic evidence have been used to identify sea ice biota revealing increased numbers of taxa. Meanwhile ecologists have used light microscopic cell enumeration in addition to the chemical and physical properties of sea ice in attempts to explain the food web structure of sea ice and its functions. Thus, during the Baltic winter, the sea ice hosts more abundant and diverse microbial communities than the water column beneath it. These communities are typically dominated by autotrophic diatoms together with a diverse assortment of dinoflagellates, auto- and heterotrophic flagellates, ciliates, metazoan rotifers and bacteria, which are mostly responsible for the recycling of nutrients. This thesis comprises ecological and systematic studies. In addition to the results of the previous studies carried out on landfast ice, the data presented here provide new insight into the spatial distribution of pelagial sea ice, which has remained largely unexplored. The studies reveal spatial heterogeneity in the pelagial sea ice of the Gulf of Bothnia. There were mismatches in chlorophyll-a concentrations and in photosynthetic efficiencies of the communities studied. The temporal succession was followed and experimental studies performed investigating the community responses towards increased or decreased light in landfast ice in the Gulf of Finland. The systematic studies carried out with established dinoflagellate cultures revealed a new resting cyst belonging to common sea ice dinoflagellate, Scrippsiella hangoei (Schiller) Larsen 1995. The cyst can be used to explain the overwintering of this species during prolonged periods of darkness. The dissimilarities and similarities in the material isolated from the sea ice called for description of a new subspecies Heterocapsa arctica ssp. frigida. The cells obtained in the cultured material were unlike those of the previously described species, necessitating description of ssp. frigida. As a result of its own unique habitus, the subspecies had been noted by Finnish taxonomists during the past three decades and thus its annual occurrence and geographical distribution in the Baltic Sea. This illustrates how combining ecology and systematics increases our understanding of organisms.
Resumo:
Increased anthropogenic loading of nitrogen (N) and phosphorus (P) has led to an eutrophication problem in the Baltic Sea, and the spring bloom is a key component in the biological uptake of increased nutrient concentrations. The spring bloom in the Baltic Sea is dominated by both diatoms and dinoflagellates. However, the sedimentation of these groups is different: diatoms tend to sink to the sea floor at the end of the bloom, while dinoflagellates to a large degree are been remineralized in the euphotic zone. Understanding phytoplankton competition and species specific ecological strategies is thus of importance for assessing indirect effects of phytoplankton community composition on eutrophication problems. The main objective of this thesis was to describe some basic physiological and ecological characteristics of the main cold-water diatoms and dinoflagellates in the Baltic Sea. This was achieved by specific studies of: (1) seasonal vertical positioning, (2) dinoflagellate life cycle, (3) mixotrophy, (4) primary production, respiration and growth and (5) diatom silicate uptake, using cultures of common cold-water diatoms: Chaetoceros wighamii, C. gracilis, Pauliella taeniata, Thalassiosira baltica, T. levanderi, Melosira arctica, Diatoma tenuis, Nitzschia frigida, and dinoflagellates: Peridiniella catenata, Woloszynskia halophila and Scrippsiella hangoei. The diatoms had higher primary production capacity and lower respiration rate compared with the dinoflagellates. This difference was reflected in the maximum growth rate, which for the examined diatoms range from 0.6 to 1.2 divisions d-1, compared with 0.2 to 0.3 divisions d-1 for the dinoflagellates. Among diatoms there were species specific differences in light utilization and uptake of silicate, and C. wighamii had the highest carbon assimilation capacity and maximum silicate uptake. The physiological properties of diatoms and dinoflagellates were used in a model of the onset of the spring bloom: for the diatoms the model could predict the initiation of the spring bloom; S. hangoei, on the other hand, could not compete successfully and did not obtain positive growth in the model. The other dinoflagellates did not have higher growth rates or carbon assimilation rates and would thus probably not perform better than S. hangoei in the model. The dinoflagellates do, however, have competitive advantages that were not included in the model: motility and mixotrophy. Previous investigations has revealed that the chain-forming P. catenata performs diurnal vertical migration (DVM), and the results presented here suggest that active positioning in the water column, in addition to DVM, is a key element in this species' life strategy. There was indication of mixotrophy in S. hangoei, as it produced and excreted the enzyme leucine aminopeptidase (LAP). Moreover, there was indirect evidence that W. halophila obtains carbon from other sources than photosynthesis when comparing increase in cell numbers with in situ carbon assimilation rates. The results indicate that mixotrophy is a part of the strategy of vernal dinoflagellates in the Baltic Sea. There were also indications that the seeding of the spring bloom is very important for the dinoflagellates to succeed. In mesocosm experiments dinoflagellates could not compete with diatoms when their initial numbers were low. In conclusion, this thesis has provided new information about the basic physiological and ecological properties of the main cold-water phytoplankton in the Baltic Sea. The main phytoplankton groups, diatoms and dinoflagellates, have different physiological properties, which clearly separate their life strategies. The information presented here could serve as further steps towards better prognostic models of the effects of eutrophication in the Baltic Sea.