8 resultados para Amplitude modulation

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective attention refers to the process in which certain information is actively selected for conscious processing, while other information is ignored. The aim of the present studies was to investigate the human brain mechanisms of auditory and audiovisual selective attention with functional magnetic resonance imaging (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). The main focus was on attention-related processing in the auditory cortex. It was found that selective attention to sounds strongly enhances auditory cortex activity associated with processing the sounds. In addition, the amplitude of this attention-related modulation was shown to increase with the presentation rate of attended sounds. Attention to the pitch of sounds and to their location appeared to enhance activity in overlapping auditory-cortex regions. However, attention to location produced stronger activity than attention to pitch in the temporo-parietal junction and frontal cortical regions. In addition, a study on bimodal attentional selection found stronger audiovisual than auditory or visual attention-related modulations in the auditory cortex. These results were discussed in light of Näätänen s attentional-trace theory and other research concerning the brain mechanisms of selective attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive impairments of attention, memory and executive functions are a fundamental feature of the pathophysiology of schizophrenia. The neurophysiological and neurochemical changes in the auditory cortex are shown to underlie cognitive impairmentsin schizophrenia patients. Functional state of the neural substrate of auditory information processing could be objectively and non-invasively probed with auditory event-related potentials (ERPs) and event- related fields (ERFs). In the current work, we explored the neurochemical effect on the neural origins of auditory information processing in relation to schizophrenia. By means of ERPs/ERFs we aimed to determine how neural substrates of auditory information processing are modulated by antipsychotic medication in schizophrenia spectrum patients (Studies I, II) and by neuropharmacological challenges in healthy human subjects (Studies III, IV). First, with auditory ERPs we investigated the effects of olanzapine (Study I) and risperidone (Study II) in a group of patients with schizophrenia spectrum disorders. After 2 and 4 weeks of treatment, olanzapine has no significant effects on mismatch negativity(MMN) and P300, which, as it has been suggested, respectively reflect preattentive and attention-dependent information processing. After 2 weeks of treatment, risperidone has no significant effect on P300, however risperidone reduces P200 amplitude. This latter effect of risperidone on neural resources responsible for P200 generation could be partly explained through the action of dopamine. Subsequently, we used simultaneous EEG/MEG to investigate the effects of memantine (Study III) and methylphenidate (Study IV) in healthy subjects. We found that memantine modulates MMN response without changing other ERP components. This could be interpreted as being due to the possible influence of memantine through the NMDA receptors on auditory change- detection mechanism, with processing of auditory stimuli remaining otherwise unchanged. Further, we found that methylphenidate does not modulate the MMN response. This finding could indicate no association between catecholaminergic activities and electrophysiological measures of preattentive auditory discrimination processes reflected in the MMN. However, methylphenidate decreases the P200 amplitudes. This could be interpreted as a modulation of auditory information processing reflected in P200 by dopaminergic and noradrenergic systems. Taken together, our set of studies indicates a complex pattern of neurochemical influences produced by the antipsychotic drugs in the neural substrate of auditory information processing in patients with schizophrenia spectrum disorders and by the pharmacological challenges in healthy subjects studied with ERPs and ERFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is among the major cancers and one of the leading causes of cancer-related deaths in Western societies. Its occurrence is strongly affected by environmental factors such as diet. Thus, for preventative strategies it is vitally important to understand the mechanisms that stimulate adenoma growth and development towards accelerated malignancy or, in contrast, attenuate them to remain in quiescence for periods as long as decades. The main objective of this study was to investigate whether diet is able to modulate β-catenin signalling related to the promotion or prevention of intestinal tumourigenesis in an animal model of colon cancer, the Min/+ mouse. A series of dietary experiments with Min/+ mice were performed where fructo-oligosaccharide inulin was used for tumour promotion and four berries, bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), cloudberry (Rubus chamaemorus) and white currant (Ribes x pallidum), were used for tumour prevention. The adenomas (Apc-/-) and surrounding normal-appearing mucosa (Apc+/-) were investigated separately due to their mutational and functional differences. Tumour promotive and preventive diets had opposite effects on β-catenin signalling in the adenomas that was related to the different adenoma growth effects of dietary inulin and berries. The levels of nuclear β-catenin and cyclin D1 combined with size of the adenomas in the treatment groups suggests that diets induced differences in the cancerous process. Adenomas progressing to malignant carcinomas are most likely found in the sub-groups having the highest levels of β-catenin. On the other hand, adenomas staying quiescent for a long period of time are most probably found in the cloudberry or white currant diet groups. The levels of membranous E-cadherin and β-catenin increased as the adenomas in the inulin diet group grew, which could be a result of the overall increase in the protein levels of the cell. Therefore, the increasing levels of membranous β-catenin in Min/+ mice adenomas would be undesirable, due to the simultaneous increase in oncogenic nuclear β-catenin. We propose that the decreased amount of membranous β-catenin in benign adenomas of berry groups also means a decrease in the nuclear pool of β-catenin. Tumour promotion, but not the tumour prevention, influenced β-catenin signalling already in the normal appearing mucosa. Inulin-induced tumour promotion was related to β-catenin signalling in Min/+ mice, and in WT mice changes were also visible. The preventative effects of berries in the initiation phase were not mediated by β-catenin signalling. Our results suggest that, in addition to the number, size, and growth rate of adenomatous polyps, the signalling pattern of the adenomas should be considered when evaluating preventative dietary strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of drug addiction include compulsive drug use despite negative consequences and re-occurring relapses, returns to drug use after a period of abstinence. Therefore, relapse prevention is one of the major challenges for the treatment of drug addiction. There are three main factors capable of inducing craving for drugs and triggering relapse long after cessation of drug use and dissipation of physical withdrawal signs: stress, re-exposure to the drug, and environmental stimuli (cues) that have been previously associated with drug use. The neurotransmitters dopamine and glutamate have been implicated in the modulation of drug-seeking behavior. The aim of this project was to examine the role of glutamatergic neurotransmission in relapse triggered by conditioned drug-associated stimuli. The focus was on clarifying whether relapse to drug seeking can be attenuated by blockade of glutamate receptors. In addition, as the nucleus accumbens has been proposed to participate in the modulation of drug-seeking behavior, the effects of glutamate receptor blockade in this brain structure on cue-induced relapse were investigated. The studies employed animals models in which rats were trained to press a lever in a test cage to obtain alcohol or intravenous cocaine. Drug availability was paired with distinct olfactory, auditory, or visual stimuli. This phase was followed by extinction training, during which lever presses did not result in the presentation of the drug or the drug-associated stimuli. Extinction training led to a gradual decrease in the number of lever presses during test sessions. Relapse was triggered by presenting the rats with the drug-associated stimuli in the absence of alcohol or cocaine. The drug-associated stimuli were alone capable of inducing resumption of lever pressing and maintaining this behavior during repeated testing. The number of lever presses during a session represented the intensity of drug-seeking and relapse behavior. The results suggest that glutamatergic neurotransmission is involved in the modulation of drug-seeking behavior. Both alcohol and cocaine relapse were attenuated by systemic pretreatment with glutamate receptor antagonists. However, differences were found in the ability of ionotropic AMPA/kainate and NMDA receptor antagonists to regulate drug-seeking behavior. The AMPA/kainate antagonists CNQX and NBQX, and L-701,324, an antagonist with affinity for the glycine site of the NMDA receptor, attenuated cue-induced drug seeking, whereas the competitive NMDA antagonist CGP39551 and the NMDA channel blocker MK-801 were without effect. MPEP, an antagonist at metabotropic mGlu5 glutamate receptors, also decreased drug seeking, but its administration was found to lead to conditioned suppression of behavior during subsequent treatment sessions, suggesting that MPEP may have undesirable side effects. The mGluR2/3 agonist LY379268 and the mGluR8 agonist (S)-3,4-DCPG decreased both cue-induced relapse to alcohol drinking and alcohol consumption. Control experiments showed however that administration of the agonists was accompanied by motor suppression limiting their usefulness. Administration of the AMPA/kainate antagonist CNQX, the NMDA antagonist D-AP5, and the mGluR5 antagonist MPEP into the nucleus accumbens resulted also in a decrease in drug-seeking behavior, suggesting that the nucleus accumbens is at least one of the anatomical sites regulating drug seeking and mediating the effects of glutamate receptor antagonists on this behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Without estrogen action, the fusion of the growth plates is postponed and statural growth continues for an exceptionally long time. Aromatase inhibitors, blockers of estrogen biosynthesis, have therefore emerged as a new potential option for the treatment of children with short stature. We investigated the efficacy of the aromatase inhibitor letrozole in the treatment of boys with idiopathic short stature (ISS) using a randomised, placebo-controlled, double-blind research setting. A total of 30 boys completed the two-year treatment. By decreasing estrogen-mediated central negative feedback, letrozole increased gonadotrophin and testosterone secretion in pubertal boys, whereas the pubertal increase in IGF-I was inhibited. Treatment with letrozole effectively delayed bone maturation and increased predicted adult height by 5.9 cm (P0.001), while placebo had no effect on either parameter. The effect of letrozole treatment on near-final height was studied in another population, in boys with constitutional delay of puberty, who received letrozole (n=9) or placebo (n=8) for one year, in combination with low-dose testosterone for six months during adolescence. The mean near-final height of boys randomised to receive testosterone and letrozole was significantly greater than that of boys who received testosterone and placebo (175.8 vs. 169.1 cm, P=0.04). As regards safety, treatment effects on bone health, lipid metabolism, insulin sensitivity, and body composition were monitored in boys with ISS. During treatment, no differences in bone mass accrual were evident between the treatment groups, as evaluated by dual-energy x-ray absorptiometry measurements of the lumbar spine and femoral neck. Bone turnover and cortical bone growth, however, were affected by letrozole treatment. As indicated by differences in markers of bone resorption (U-INTP) and formation (S-PINP and S-ALP), the long-term rate of bone turnover was lower in letrozole-treated boys, despite their more rapid advancement in puberty. Letrozole stimulated cortical bone growth in those who progressed in puberty: the metacarpal index (MCI), a measure of cortical bone thickness, increased more in letrozole-treated pubertal boys than in placebo-treated pubertal boys (25% vs. 9%, P=0.007). The change in MCI correlated positively with the mean testosterone-to-estradiol ratio. In post-treatment radiographic evaluation of the spine, a high rate of vertebral deformities - mild anterior wedging and mild compression deformities - were found in both placebo and letrozole groups. In pubertal boys with ISS treated with letrozole, stimulated testosterone secretion was associated with a decrease in the percentage of fat mass and in HDL-cholesterol, while LDL-cholesterol and triglycerides remained unchanged. Insulin sensitivity, as evaluated by HOMA-IR, was not significantly affected by the treatment. In summary, treatment with the aromatase inhibitor letrozole effectively delayed bone maturation and increased predicted adult height in boys with ISS. Long-term follow-up data of boys with constitutional delay of puberty, treated with letrozole for one year during adolescence, suggest that the achieved gain in predicted adult height also results in increased adult height. However, until the safety of aromatase inhibitor treatment in children and adolescents is confirmed, such treatment should be considered experimental.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.