9 resultados para All plastic clean surface pumped supply

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plastic surfaces are a group of materials used for many purposes. The present study was focused on methods for investigation of surface topography, wearing and cleanability of polyvinyl chloride (PVC) model surfaces and industrial plastic surfaces. Contact profilometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are powerful methods for studying the topography of plastic surfaces. Although they have their own limitations, they are together an effective tool providing useful information on surface topography, especially when studying laboratory-made PVC model surfaces with known chemical compositions and structures. All examined laboratory-made PVC plastic surfaces examined in this work could be considered as smooth according to both AFM and profilometer measurements because height differences are in the nanoscale on every surface. Industrial plastic surfaces are a complex group of materials because of their chemical and topographical heterogeneity, but they are nevertheless important reference materials when developing cleaning and wearing methods. According to the results of this study the Soiling and Wearing Drum and the Frick-Taber methods are very useful when simulating three-body wearing of plastic surfaces. Both the investigated wearing methods can be used to compare the wearing of different plastic materials using appropriate evaluation methods of wearing and industrial use. In this study, physical methods were developed and adapted from other fields of material research to cleanability studies. The thesis focuses on the methodology for investigating the cleanability of plastic surfaces under realistic conditions, where surface topography and the effect of wear cleanability were among the major topics. A colorimetric method proved to be suitable for examining the cleanability of the industrial plastic surfaces. The results were utilized to evaluate the relationship between cleanability and the surface properties of plastic surfaces. The devices and methods used in the work can be utilized both in material research and product development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this thesis was to elucidate the effects of regrowth grass silage and red clover silage on nutrient supply and milk production of dairy cows as compared with primary growth grass silages. In the first experiment (publication I), two primary growth and four regrowth grass silages were harvested at two stages of growth. These six silages were fed to 24 lactating dairy cows with two levels of concentrate allowance. Silage intake and energy corrected milk yield (ECM) responses, and the range in these response variables between the diets, were smaller when regrowth silages rather than primary growth silages were fed. Milk production of dairy cows reflected the intake of metabolizable energy (ME), and no differences in the ME utilization were found between the diets based on silages harvested from primary growth and regrowth. The ECM response to increased concentrate allowance was, on average, greater when regrowth rather than primary growth silages were fed. In the second experiment (publication II), two silages from primary growth and two from regrowth used in I were fed to rumen cannulated lactating dairy cows. Cows consumed less feed dry matter (DM), energy and protein, and produced less milk, when fed diets based on regrowth silages rather than primary growth silages. Lower milk production responses of regrowth grass silage diets were mainly due to the lower silage DM intake, and could not be accounted for by differences in energy or protein utilization. Regrowth grass silage intake was not limited due to neutral detergent fibre (NDF) digestion or rumen fill or passage kinetics. However, lower intake may be at least partly attributable to plant diseases such as leaf spot infections, dead deteriorating material or abundance of weeds, which are all higher in regrowth compared with primary growth, and increase with advancing regrowth. In the third experiment (publications III and IV), red clover silages and grass silages harvested at two stages of growth, and a mixed diet of red clover and grass silages, were fed to five rumen cannulated lactating dairy cows. In spite of the lower average ME intake for red clover diets, the ECM production remained unchanged suggesting more efficient utilisation of ME for red clover diets compared with grass diets. Intake of N, and omasal canal flows of total non-ammonia N (NAN), microbial and non-microbial NAN were higher for red clover than for grass silage diets, but were not affected by forage maturity. Delaying the harvest tended to decrease DM intake of grass silage and increase that of red clover silage. The digestion rate of potentially digestible NDF was faster for red clover diets than for grass silage diets. Delaying the harvest decreased the digestion rate for grass but increased it for red clover silage diets. The low intake of early-cut red clover silage could not be explained by silage digestibility, fermentation quality, or rumen fill but was most likely related to the nutritionally suboptimal diet composition because inclusion of moderate quality grass silage in mixed diet increased silage DM intake. Despite the higher total amino acid supply of cows fed red clover versus grass silage diets, further milk production responses on red clover diets were possibly compromised by an inadequate supply of methionine as evidenced by lower methionine concentration in the amino acid profile of omasal digesta and plasma. Increasing the maturity of ensiled red clover does not seem to affect silage DM intake as consistently as that of grasses. The efficiency of N utilization for milk protein synthesis was lower for red clover diets than for grass diets. It was negatively related to diet crude protein concentration similarly to grass silage diets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Väitöskirjani käsittele mikrobien ja erilaisten kemikaalien rooleja saostumien ja biofilmien muodostumisessa paperi- ja kartonkikoneilla. "Saostuma" tässä työssä tarkoittaa kiinteän aineen kertymää konepinnoille tai rajapinnoille konekierroissa, jotka on tarkoitettu massasulppujen, lietteiden, vesien tai ilman kuljetukseen. Saostumasta tulee "biofilmi" silloin kun sen oleellinen rakennekomponentti on mikrobisolut tai niiden tuotteet. Väitöstyöni työhypoteesina oli, että i. tietämys saostumien koostumuksesta, sekä ii. niiden rakenteesta, biologisista, fysikaalis-kemiallisista ja teknisistä ominaisuuksista ohjaavat tutkijaa löytämään ympäristöä säästäviä keinoja estää epätoivottujen saostumien muodostus tai purkaa jo muodostuneita saostumia. Selvittääkseni saostumien koostumista ja rakennetta käytin monia erilaisia analytiikan työkaluja, kuten elektronimikroskopiaa, konfokaali-laser mikroskopiaa (CLSM), energiadispersiivistä röntgenanalyysiä (EDX), pyrolyysi kaasukromatografiaa yhdistettynä massaspektrometriaan (Py-GCMS), joninvaihtokromatografiaa, kaasukromatografiaa ja mikrobiologisia analyysejä. Osallistuin aktiivisesti innovatiivisen, valon takaisinsirontaan perustuvan sensorin kehittämistyöhön, käytettäväksi biofilmin kasvun mittaukseen suoraan koneen vesikierroista ja säiliöistä. Työni osoitti, että monet paperinvalmistuksessa käytetyistä kemikaaleista reagoivat keskenään tuottaen orgaanisia tahmakerroksia konekiertojen teräspinnoille. Löysin myös kerrostumia, jotka valomikroskooppisessa tarkastelussa oli tulkittu mikrobeiksi, mutta jotka elektronimikroskopia paljasti alunasta syntyneiksi, alumiinihydroksidiksi joka saostui pH:ssa 6,8 kiertokuitua käyttävän koneen viiravesistä. Monet paperintekijät käyttävät vieläkin alunaa kiinnitysaineena vaikka prosessiolot ovat muuttuneet happamista neutraaleiksi. Sitä pidetään paperitekijän "aspiriinina", mutta väitöstutkimukseni osoitti sen riskit. Löysin myös orgaanisia saostumia, joiden alkuperä oli aineiden, kuten pihkan, saippuoituminen (kalsium saippuat) niin että muodostui tahmankasvua ylläpitävä alusta monilla paperi- ja kartonkikoneilla. Näin solumuodoiltaan Deinococcus geothermalista muistuttavia bakteereita kasvamassa lujasti teräskoepalojen pintaan kiinnittyneinä pesäkkeinä, kun koepaloja upotettiin paperikoneiden vesikiertoihin. Nämä deinokokkimaiset pesäkkeet voivat toimia jalustana, tarttumisalustana muiden mikrobien massoille, joka selittäisi miksi saostumat yleisesti sisältävät deinokokkeja pienenä, muttei koskaan pääasiallisena rakenneosana. Kun paperikoneiden käyttämien vesien (raakavedet, lämminvesi, biologisesti puhdistettu jätevesi) laatua tutkitaan, mittausmenetelmällä on suuri merkitys. Koepalan upotusmenetelmällä todettu biofilmikasvu ja viljelmenetelmällä mitattu bakteerisaastuneisuus korreloivat toisiinsa huonosti etenkin silloin kun likaantumisessa oli mukana rihmamaiseti kasvavia bakteereja. Huoli ympäristöstä on pakottanut paperi- ja kartonkikoneiden vesikiertojen sulkemiseen. Vesien kierrätys ja prosessivesien uudelleenkäyttö nostavat prosessilämpötilaa ja lisäävät koneella kiertävien kolloidisten ja liuenneiden aineiden määriä. Tutkin kiertovesien pitoisuuksia kolmessa eriasteisesti suljetussa tehtaassa, joiden päästöt olivat 0 m3, 0,5 m3 ja 4 m3 jätevettä tuotetonnia kohden, perustuen puhdistetun jäteveden uudelleen käyttöön. Nollapäästöisellä tehtaalla kiertovesiin kertyi paljon orgaanisesti sidottua hiiltä (> 10 g L-1), etenkin haihtuvina happoina (maito-, etikka-, propioni- ja voi-). Myös sulfaatteja, klorideja, natriumia ja kalsiumia kertyi paljon, > 1 g L-1 kutakin. Pääosa (>40%) kaikista bakteereista oli 16S rRNA geenisekvenssianalyysien tulosten perusteella sukua, joskin etäistä (< 96%) ainoastaan Enterococcus cecorum bakteerille. 4 m3 päästävältä tehtaalta löytyi lisäksi Bacillus thermoamylovorans ja Bacillus coagulans. Tehtaiden saostumat sisälsivät arkkeja suurina pitoisuuksina, ≥ 108 g-1, mutta tunnistukseen riittävää sekvenssisamanlaisuutta löytyi vain yhteen arkkisukuun, Methanothrix. Tutkimustulokset osoittivat että tehtaan vesikiertojen sulkeminen vähensi rajusti mikrobiston monimuotoisuutta, muttei estänyt liuenneen aineen ja kiintoaineen mineralisoitumista.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photocatalytic TiO2 thin films can be highly useful in many environments and applications. They can be used as self-cleaning coatings on top of glass, tiles and steel to reduce the amount of fouling on these surfaces. Photocatalytic TiO2 surfaces have antimicrobial properties making them potentially useful in hospitals, bathrooms and many other places where microbes may cause problems. TiO2 photocatalysts can also be used to clean contaminated water and air. Photocatalytic oxidation and reduction reactions proceed on TiO2 surfaces under irradiation of UV light meaning that sunlight and even normal indoor lighting can be utilized. In order to improve the photocatalytic properties of TiO2 materials even further, various modification methods have been explored. Doping with elements such as nitrogen, sulfur and fluorine, and preparation of different kinds of composites are typical approaches that have been employed. Photocatalytic TiO2 nanotubes and other nanostructures are gaining interest as well. Atomic Layer Deposition (ALD) is a chemical gas phase thin film deposition method with strong roots in Finland. This unique modification of the common Chemical Vapor Deposition (CVD) method is based on alternate supply of precursor vapors to the substrate which forces the film growth reactions to proceed only on the surface in a highly controlled manner. ALD gives easy and accurate film thickness control, excellent large area uniformity and unparalleled conformality on complex shaped substrates. These characteristics have recently led to several breakthroughs in microelectronics, nanotechnology and many other areas. In this work, the utilization of ALD to prepare photocatalytic TiO2 thin films was studied in detail. Undoped as well as nitrogen, sulfur and fluorine doped TiO2 thin films were prepared and thoroughly characterized. ALD prepared undoped TiO2 films were shown to exhibit good photocatalytic activities. Of the studied dopants, sulfur and fluorine were identified as much better choices than nitrogen. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on various complex shaped substrates by exploiting the good qualities of ALD. A clear enhancement in the photocatalytic activity was achieved with these nanostructures. Several new ALD processes were also developed in this work. TiO2 processes based on two new titanium precursors, Ti(OMe)4 and TiF4, were shown to exhibit saturative ALD-type of growth when water was used as the other precursor. In addition, TiS2 thin films were prepared for the first time by ALD using TiCl4 and H2S as precursors. Ti1-xNbxOy and Ti1-xTaxOy transparent conducting oxide films were prepared successfully by ALD and post-deposition annealing. Highly unusual, explosive crystallization behaviour occurred in these mixed oxides which resulted in anatase crystals with lateral dimensions over 1000 times the film thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals face variable environmental conditions during their life. This may be due to migration, dispersion, environmental changes or, for example, annual variation in weather conditions. Genetic adaptation to a novel environment happens through natural selection. Phenotypic plasticity allows, however, a quick individual response to a new environment. Phenotypic plasticity may also be beneficial for individual if the environment is highly variable. For example, eggs are costly to produce. If the food conditions vary significantly between breeding seasons it is useful to be able to adjust the clutch and egg size according to the food abundance. In this thesis I use Ural owl vole system to study phenotypic plasticity and natural selection using a number of reproduction related traits. The Ural owl (Strix uralensis) is a long-lived and sedentary species. The reproduction and survival of the Ural owl, in fact their whole life, is tied to the dramatically fluctuating vole densities. Ural owls do not cause vole cycles but they have to adjust their behaviour to the rather predictable population fluctuations of these small mammals. Earlier work with this system has shown that Ural owl laying date and clutch size are plastic in relation to vole abundance. Further, individual laying date clutch size reaction norms have been shown to vary in the amount of plasticity. My work extends the knowledge of natural selection and phenotypic plasticity in traits related to reproduction. I show that egg size, timing of the onset of incubation and nest defense aggressiveness are plastic traits with fitness consequences for the Ural owl. Although egg size is in general thought to be a fixed characteristic of an individual, this highly heritable trait in the Ural owl is also remarkably plastic in relation to the changes in vole numbers, Ural owls are laying the largest eggs when their prey is most abundant. Timing of the onset of incubation is an individual-specific property and plastic in relation to clutch size. Timing of incubation is an important underlying cause for asynchronous hatching in birds. Asynchronous hatching is beneficial to offspring survival in Ural owl. Hence, timing of the onset of incubation may also be under natural selection. Ural owl females also adjust their nest defense aggressiveness according to the vole dynamics, being most aggressive in years when they produce the largest broods. Individual females show different levels of nest defense aggressiveness. Aggressiveness is positively correlated with the phenotypic plasticity of aggressiveness. As elevated nest defense aggressiveness is selected for, it may promote the plasticity of aggressive nest defense behaviour. All the studied traits are repeatable or heritable on individual level, and their expression is either directly or indirectly sensitive to changes in vole numbers. My work considers a number of important fitness-related traits showing phenotypic plasticity in all of them. Further, in two chapters I show that there is individual variation in the amount of plasticity exhibited. These findings on plasticity in reproduction related traits suggest that variable environments indeed promote plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusion power is an appealing source of clean and abundant energy. The radiation resistance of reactor materials is one of the greatest obstacles on the path towards commercial fusion power. These materials are subject to a harsh radiation environment, and cannot fail mechanically or contaminate the fusion plasma. Moreover, for a power plant to be economically viable, the reactor materials must withstand long operation times, with little maintenance. The fusion reactor materials will contain hydrogen and helium, due to deposition from the plasma and nuclear reactions because of energetic neutron irradiation. The first wall divertor materials, carbon and tungsten in existing and planned test reactors, will be subject to intense bombardment of low energy deuterium and helium, which erodes and modifies the surface. All reactor materials, including the structural steel, will suffer irradiation of high energy neutrons, causing displacement cascade damage. Molecular dynamics simulation is a valuable tool for studying irradiation phenomena, such as surface bombardment and the onset of primary damage due to displacement cascades. The governing mechanisms are on the atomic level, and hence not easily studied experimentally. In order to model materials, interatomic potentials are needed to describe the interaction between the atoms. In this thesis, new interatomic potentials were developed for the tungsten-carbon-hydrogen system and for iron-helium and chromium-helium. Thus, the study of previously inaccessible systems was made possible, in particular the effect of H and He on radiation damage. The potentials were based on experimental and ab initio data from the literature, as well as density-functional theory calculations performed in this work. As a model for ferritic steel, iron-chromium with 10% Cr was studied. The difference between Fe and FeCr was shown to be negligible for threshold displacement energies. The properties of small He and He-vacancy clusters in Fe and FeCr were also investigated. The clusters were found to be more mobile and dissociate more rapidly than previously assumed, and the effect of Cr was small. The primary damage formed by displacement cascades was found to be heavily influenced by the presence of He, both in FeCr and W. Many important issues with fusion reactor materials remain poorly understood, and will require a huge effort by the international community. The development of potential models for new materials and the simulations performed in this thesis reveal many interesting features, but also serve as a platform for further studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species identification forms the basis for understanding the diversity of the living world, but it is also a prerequisite for understanding many evolutionary patterns and processes. The most promising approach for correctly delimiting and identifying species is to integrate many types of information in the same study. Our aim was to test how cuticular hydro- carbons, traditional morphometrics, genetic polymorphisms in nuclear markers (allozymes and DNA microsatellites) and DNA barcoding (partial mitochondrial COI gene) perform in delimiting species. As an example, we used two closely related Formica ants, F. fusca and F. lemani, sampled from a sympatric population in the northern part of their distribu- tion. Morphological characters vary and overlap in different parts of their distribution areas, but cuticular hydrocarbons include a strong taxonomic signal and our aim is to test the degree to which morphological and genetic data correspond to the chemical data. In the morphological analysis, species were best separated by the combined number of hairs on pro- notum and mesonotum, but individual workers overlapped in hair numbers, as previously noted by several authors. Nests of the two species were separated but not clustered according to species in a Principal Component Analysis made on nuclear genetic data. However, model-based Bayesian clustering resulted in perfect separation of the species and gave no indication of hybridization. Furthermore, F. lemani and F. fusca did not share any mitochondrial haplotypes, and the species were perfectly separated in a phylogenetic tree. We conclude that F. fusca and F. lemani are valid species that can be separated in our study area relatively well with all methods employed. However, the unusually small genetic differen- tiation in nuclear markers (FST = 0.12) shows that they are closely related, and occasional hybridization between F. fusca and F. lemani cannot be ruled out.