25 resultados para Air Pollutants, Occupational
em Helda - Digital Repository of University of Helsinki
Resumo:
The need for mutual recognition of accurate measurement results made by competent laboratories has been very widely accepted at the international level e.g., at the World Trade Organization. A partial solution to the problem was made by the International Committee for Weights and Measures (CIPM) in setting up the Mutual Recognition Arrangement (CIPM MRA), which was signed by National Metrology Institutes (NMI) around the world. The core idea of the CIPM MRA is to have global arrangements for the mutual acceptance of the calibration certificates of National Metrology Institutes. The CIPM MRA covers all the fields of science and technology for which NMIs have their national standards. The infrastructure for the metrology of the gaseous compounds carbon monoxide (CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2) and ozone (O3) has been constructed at the national level at the Finnish Meteorological Institute (FMI). The calibration laboratory at the FMI was constructed for providing calibration services for air quality measurements and to fulfil the requirements of a metrology laboratory. The laboratory successfully participated, with good results, in the first comparison project, which was aimed at defining the state of the art in the preparation and analysis of the gas standards used by European metrology institutes and calibration laboratories in the field of air quality. To confirm the competence of the laboratory, the international external surveillance study was conducted at the laboratory. Based on the evidence, the Centre for Metrology and Accreditation (MIKES) designated the calibration laboratory at the Finnish Meteorological Institute (FMI) as a National Standard Laboratory in the field of air quality. With this designation, the MIKES-FMI Standards Laboratory became a member of CIPM MRA, and Finland was brought into the internationally-accepted forum in the field of gas metrology. The concept of ‘once measured - everywhere accepted’ is the leading theme of the CIPM MRA. The calibration service of the MIKES-FMI Standards Laboratory realizes the SI traceability system for the gas components, and is constructed to enable it to meet the requirements of the European air quality directives. In addition, all the relevant uncertainty sources that influence the measurement results have been evaluated, and the uncertainty budgets for the measurement results have been created.
Resumo:
There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.
Resumo:
Tropospheric ozone (O3) is one of the most common air pollutants in industrialized countries, and an increasing problem in rapidly industrialising and developing countries in Asia, Africa and South America. Elevated concentrations of tropospheric O3 can lead to decrease in photosynthesis rate and therefore affect the normal metabolism, growth and seed production. Acute and high O3 episodes can lead to extensive damage leading to dead tissue in plants. Thus, O3 derived growth defects can lead to reduction in crop yield thereby leading to economical losses. Despite the extensive research on this area, many questions remain open on how these processes are controlled. In this study, the stress-induced signaling routes and the components involved were elucidated in more detail starting from visual damage to changes in gene expression, signaling routes and plant hormone interactions that are involved in O3-induced cell death. In order to elucidate O3-induced responses in Arabidopsis, mitogen-activated protein kinase (MAPK) signaling was studied using different hormonal signaling mutants. MAPKs were activated at the beginning of the O3 exposure. The activity of MAPKs, which were identified as AtMPK3 and AtMPK6, reached the maximum at 1 and 2 hours after the start of the exposure, respectively. The activity decreased back to clean air levels at 8 hours after the start of the exposure. Both AtMPK3 and AtMPK6 were translocated to nucleus at the beginning of the O3 exposure where they most likely affect gene expression. Differences were seen between different hormonal signaling mutants. Functional SA signaling was shown to be needed for the full protein levels and activation of AtMPK3. In addition, AtMPK3 and AtMPK6 activation was not dependent on ethylene signaling. Finally, jasmonic acid was also shown to have an impact on AtMPK3 protein levels and AtMPK3 activity. To further study O3-induced cell death, an earlier isolated O3 sensitive Arabidopsis mutant rcd1 was mapped, cloned and further characterized. RCD1 was shown to encode a gene with WWE and ADP-ribosylation domains known to be involved in protein-protein interactions and cell signaling. rcd1 was shown to be involved in many processes including hormonal signaling and regulation of stress-responsive genes. rcd1 is sensitive against O3 and apoplastic superoxide, but tolerant against paraquat that produces superoxide in chloroplast. rcd1 is also partially insensitive to glucose and has alterations in hormone responses. These alterations are seen as ABA insensitivity, reduced jasmonic acid sensitivity and reduced ethylene sensitivity. All these features suggest that RCD1 acts as an integrative node in hormonal signaling and it is involved in the hormonal regulation of several specific stress-responsive genes. Further studies with the rcd1 mutant showed that it exhibits the classical features of programmed cell death, PCD, in response to O3. These include nuclear shrinkage, chromatin condensation, nuclear DNA degradation, cytosol vesiculation and accumulation of phenolic compounds and eventually patches of HR-like lesions. rcd1 was found to produce extensive amount of salicylic acid and jasmonic acid in response to O3. Double mutant studies showed that SA independent and dependent processes were involved in the O3-induced PCD in rcd1 and that increased sensitivity against JA led to increased sensitivity against O3. Furthermore, rcd1 had alterations in MAPK signature that resembled changes that were previously seen in mutants defective in SA and JA signaling. Nitric oxide accumulation and its impact on O3-induced cell death were also studied. Transient accumulation of NO was seen at the beginning of the O3 exposure, and during late time points, NO accumulation coincided with the HR-like lesions. NO was shown to modify defense gene expression, such as, SA and ethylene biosynthetic genes. Furthermore, rcd1 was shown to produce more NO in control conditions. In conclusion, NO was shown to be involved in O3-induced signaling leading to attenuation of SA biosynthesis and other defense related genes.
Resumo:
Occupational burnout and heath Occupational burnout is assumed to be a negative consequence of chronic work stress. In this study, it was explored in the framework of occupational health psychology, which focusses on psychologically mediated processes between work and health. The objectives were to examine the overlap between burnout and ill health in relation to mental disorders, musculoskeletal disorders, and cardiovascular diseases, which are the three commonest disease groups causing work disability in Finland; to study whether burnout can be distinguished from ill health by its relation to work characteristics and work disability; and to determine the socio-demographic correlates of burnout at the population level. A nationally representative sample of the Finnish working population aged 30 to 64 years (n = 3151-3424) from the multidisciplinary epidemiological Health 2000 Study was used. Burnout was measured with the Maslach Burnout Inventory - General Survey. The diagnoses of common mental disorders were based on the standardized mental health interview (the Composite International Diagnostic Interview), and physical illnesses were determined in a comprehensive clinical health examination by a research physician. Medically certified sickness absences exceeding 9 work days during a 2-year period were extracted from a register of The Social Insurance Institution of Finland. Work stress was operationalized according to the job strain model. Gender, age, education, occupational status, and marital status were recorded as socio-demographic factors. Occupational burnout was related to an increased prevalence of depressive and anxiety disorders and alcohol dependence among the men and women. Burnout was also related to musculoskeletal disorders among the women and cardiovascular diseases among the men independently of socio-demographic factors, physical strenuousness of work, health behaviour, and depressive symptoms. The odds of having at least one long, medically-certified sickness absence were higher for employees with burnout than for their colleagues without burnout. For severe burnout, this association was independent of co-occurring common mental disorders and physical illnesses for both genders, as was also the case for mild burnout among the women. In a subgroup of the men with absences, severe burnout was related to a greater number of absence days than among the women with absences. High job strain was associated with a higher occurrence of burnout and depressive disorders than low job strain was. Of these, the association between job strain and burnout was stronger, and it persisted after control for socio-demographic factors, health behaviour, physical illnesses, and various indicators of mental health. In contrast, job strain was not related to depressive disorders after burnout was accounted for. Among the working population over 30 years of age, burnout was positively associated with age. There was also a tendency towards higher levels of burnout among the women with low educational attainment and occupational status and among the unmarried men. In conclusion, a considerable overlap was found between burnout, mental disorders, and physical illnesses. Still, burnout did not seem to be totally redundant with respect to ill health. Burnout may be more strongly related to stressful work characteristics than depressive disorders are. In addition, burnout seems to be an independent risk factor for work disability, and it could possibly be used as a marker of health-impairing work stress. However, burnout may represent a different kind of risk factor for men and women, and this possibility needs to be taken into account in the promotion of occupational health.
Resumo:
The aim of this dissertation was to examine the determinants of severe back disorders leading to hospital admission in Finland. First, back-related hospitalisations were considered from the perspective of socioeconomic status, occupation, and industry. Secondly, the significance of psychosocial factors at work, sleep disturbances, and such lifestyle factors as smoking and overweight was studied as predictors of hospitalisation due to back disorders. Two sets of data were used: 1) the population-based data comprised all occupationally active Finns aged 25-64, and included hospitalisations due to back disorders in 1996 and 2) a cohort of employees followed up from 1973 to 2000 having been hospitalised due to back disorders. The results of the population-based study showed that people in physically strenuous industries and occupations, such as agriculture and manufacturing, were at an increased risk of being hospitalised for back disorders. The lowest hospitalisation rates were found in sedentary occupations. Occupational class and the level of formal education were independently associated with hospitalisation for back disorders. This stratification was fairly consistent across age-groups and genders. Men had a slightly higher risk of becoming hospitalised compared with women, and the risk increased with age among both genders. The results of the prospective cohort study showed that psychosocial factors at work such as low job control and low supervisor support predicted subsequent hospitalisation for back disorders even when adjustments were made for occupational class and physical workload history. However, psychosocial factors did not predict hospital admissions due to intervertebral disc disorders; only admissions due to other back disorders. Smoking and overweight predicted, instead, only hospitalisation for intervertebral disc disorders. These results suggest that the etiological factors of disc disorders and other back disorders differ from each other. The study concerning the association of sleep disturbances and other distress symptoms with hospitalisation for back disorders revealed that sleep disturbances predicted subsequent hospitalisation for all back disorders after adjustment for chronic back disorders and recurrent back symptoms at baseline, as well as for work-related load and lifestyle factors. Other distress symptoms were not predictive of hospitalisation.
Resumo:
Objective and background. Tobacco smoking, pancreatitis and diabetes mellitus are the only known causes of pancreatic cancer, leaving ample room for yet unidentified determinants. This is an empirical study on a Finnish data on occupational exposures and pancreatic cancer risk, and a non-Bayesian and a hierarchical Bayesian meta-analysis of data on occupational factors and pancreatic cancer. Methods. The case-control study analyzed 595 incident cases of pancreatic cancer and 1,622 controls of stomach, colon, and rectum cancer, diagnosed 1984-1987 and known to be dead by 1990 in Finland. The next-of-kin responded to a mail questionnaire on job and medical histories and lifestyles. Meta-analysis of occupational risk factors of pancreatic cancer started off with 1,903 identified studies. The analyses were based on different subsets of that database. Five epidemiologists examined the reports and extracted the pertinent data using a standardized extraction form that covered 20 study descriptors and the relevant relative risk estimates. Random effects meta-analyses were applied for 23 chemical agents. In addition, hierarchical Bayesian models for meta-analysis were applied to the occupational data of 27 job titles using job exposure matrix as a link matrix and estimating the relative risks of pancreatic cancer associated with nine occupational agents. Results. In the case-control study, logistic regressions revealed excess risks of pancreatic cancer associated with occupational exposures to ionizing radiation, nonchlorinated solvents, and pesticides. Chlorinated hydrocarbon solvents and related compounds, used mainly in metal degreasing and dry cleaning, are emerging as likely risk factors of pancreatic cancer in the non-Bayesian and the hierarchical Bayesian meta-analysis. Consistent excess risk was found for insecticides, and a high excess for nickel and nickel compounds in the random effects meta-analysis but not in the hierarchical Bayesian meta-analysis. Conclusions. In this study occupational exposure to chlorinated hydrocarbon solvents and related compounds and insecticides increase risk of pancreatic cancer. Hierarchical Bayesian meta-analysis is applicable when studies addressing the agent(s) under study are lacking or very few, but several studies address job titles with potential exposure to these agents. A job-exposure matrix or a formal expert assessment system is necessary in this situation.
Resumo:
This study concerns Framework Directive 89/391/EEC on health and safety at work, which encouraged improvements in occupational health services (OHS) for workers in EU member states. Framework Directive 89/391/EEC originally aimed at bringing the same level of occupational health and safety to employees in both the public and private sectors in EU member states. However, the implementation of the framework directive and OHS varies widely among EU member states. Occupational health services have generally been considered an important work-related welfare benefit in EU member states. The purpose of this study was to analyse OHS within the EU context and then analyse the impact of EU policies on OHS implementation as part of the welfare state benefit. The focus is on social, health, and industrial policies within welfare state regimes as well as EU policy-making processes affecting these policies in EU member states. The research tasks were divided into four groups related to the policy, functions, targets,and actors of OHS. The questions related to policy tried to discover the role of OHS in other policies, such as health, social, and labour market policies within the EU. The questions about functions sought to describe the changes, as well as the path dependence, of OHS in EU member states after the framework directive. The questions about targets were based on the general aims of WHO and the ILO in relation to equity, solidarity, universality, and access to OHS. The questions on actors were designed to understand the variety of stakeholders interested in OHS. The actors were supranational (EU, ILO, and WHO), national (ministries, institutes, and professional organisations), and social partners (trade unions and employers organisations). The study data were collected by interviewing 92 people in 15 EU member states, including representatives of ministries, institutions, research,trade unions, employers organisations, and occupational health organisations. Other documents were collected from the Internet,databases, libraries, and conference materials for a systematic review of the policies, strategies, organisation, financing, and monitoring of OHS in EU member states. Different analytical methods were used in the data analysis. The main findings of the study can be summarised as follows. First, occupational health services is a context-dependent phenomenon, which therefore varies according to the development of the welfare state in general, and depends on each country s culture, history, economy, and politics. The views of different stakeholders in EU member states concerning the impact and possibilities of OHS to improve health vary from evidence-based opinions to the sporadic impact of OHS on occupational health. OHS as a concept is vaguely defined by the EU, whereas the ILO defines OHS content. The tasks of OHS began as preventive and protective services for workers. However, they have moved towards multidisciplinary and organisational development as well as the workplace health promotion sphere.Since 1989 OHS has developed differently in different EU member states depending on the starting position of those states, but planning and implementation are crucial phases in the process toward better OHS coverage, equity, and access. Nevertheless, the data used for the planning and legitimisation of OHS activities are mainly based on occupational health data rather than on OHS data. This makes decisions on political or policy grounds inaccurate. OHS is still an evolving concept and benefit for workers, but the Europeanisation of OHS reflects contextual changes, such as the impact of the internal market, competition, and commercialisation on OHS. Stronger cooperation and integration with health, social, and employment services would be an asset for workers, because of new epidemics, an epidemiological shift towards new risks, an ageing labour market, and changes in the labour market. Different methods and approaches are needed in order to study the results of integrated services. In the future, more detailed information will be needed about the actual impact of EU policies on OHS and decision-making processes in order to get OHS into different policies in the EU and its member states. Further results and effects of OHS processes on occupational health need to be analysed more carefully. The adoption of a variety of research strategies and a multidisciplinary approach to understand the influence of different policies on OHS in the EU and its member states would highlight the options and opportunities to improve workers occupational health. Key subject headings: Occupational health services, EU policy, policymaking,framework directive 89/391/EEC
Resumo:
Species of the genera Rhodococcus, Gordonia and Mycobacterium are known as degraders of recalcitrant pollutants. These bacteria are good survivors in harsh environments. Due to such properties these organisms are able to occupy a wide range of environmental niches. The members of these taxa have been suggested as tools for biotechnical applications such as bioremediation and biosynthesis. At the same time several of the species are known as opportunistic human pathogens. Therefore, the detailed characterization of any isolate that has potential for biotechnological applications is very important. This thesis deals with several corynebacterial strains originating from different polluted environments: soil, water-damaged indoor walls, and drinking water distribution systems. A polyphasic taxonomic approach was applied for characterization of the isolates. We found that the strains degrading monoaromatic compounds belonged to Rhodococcus opacus, a species that has not been associated with any health problem. The taxonomic position of strain B293, used for many years in degradation research under different names, was clarified. We assigned it to the species Gordonia polyisoprenivorans. This species is classified under European Biohazard grouping 1, meaning that it is not considered a health hazard for humans. However, there are reports of catheter-associated bacteraemia caused by G. polyisoprenivorans. Our results suggested that the ability of the organism to grow on phthalate esters, used as softeners in medical plastics, may be associated with the colonization of catheters and other devices. In this thesis Mycobacterium lentiflavum, a new emerging opportunistic human pathogen, was isolated from biofilms growing in public drinking water distribution systems. Our report on isolation of M. lentiflavum from water supplies is the second report on this species from drinking water systems, which may thus constitute a reservoir of M. lentiflavum. Automated riboprinting was evaluated for its applicability in rapidly identifying environmental mycobacteria. The technique was found useful in the characterization of several species of rapidly and slowly growing environmental mycobacteria. The second aspect of this thesis refers to characterization of the degradation and tolerance power of several R. opacus, M. murale and G. polyisoprenivorans strains. R. opacus GM-14 utilizes a wide range of aromatic substrates, including benzene, 15 different halobenzenes, 18 phenols and 7 benzoates. This study revealed the high tolerance of R. opacus strains toward toxic hydrophobic compounds. R. opacus GM-14 grew in mineral medium to which benzene or monochlorobenzene was added in amounts of 13 or 3 g l-1, respectively. R. opacus GM-29 utilized toluene and benzene for growth. Strain GM-29 grew in mineral medium with 7 g l-1 of liquid toluene or benzene as the sole carbon source, corresponding to aqueous concentrations of 470 and 650 mg l-1, respectively. Most organic solvents, such as toluene and benzene, due to their high level of hydrophobicity, pass through the bacterial membrane, causing its disintegration. In this thesis the mechanisms of adaptation of rhodococci to toxic hydrophobic compounds were investigated. The rhodococcal strains increased the level of saturation of their cellular fatty acids in response to challenge with phenol, chlorophenol, benzene, chlorobenzene or toluene. The results indicated that increase in the saturation level of cellular fatty acids, particularly that in tuberculostearic acid, is part of the adaptation mechanism of strains GM-14 and GM-29 to the presence of toxic hydrophobic compounds.
Resumo:
We report here the structures and properties of heat-stable, non-protein, and mammalian cell-toxic compounds produced by spore-forming bacilli isolated from indoor air of buildings and from food. Little information is available on the effects and occurrence of heat-stable non-protein toxins produced by bacilli in moisture-damaged buildings. Bacilli emit spores that move in the air and can serve as the carriers of toxins, in a manner similar to that of the spores of toxic fungi found in contaminated indoor air. Bacillus spores in food cause problems because they tolerate the temperatures applied in food manufacture and the spores later initiate growth when food storage conditions are more favorable. Detection of the toxic compounds in Bacillus is based on using the change in mobility of boar spermatozoa as an indicator of toxic exposure. GC, LC, MS, and nuclear magnetic resonance NMR spectroscopy were used for purification, detection, quantitation, and analysis of the properties and structures of the compounds. Toxicity and the mechanisms of toxicity of the compounds were studied using boar spermatozoa, feline lung cells, human neural cells, and mitochondria isolated from rat liver. The ionophoric properties were studied using the BLM (black-lipid membrane) method. One novel toxin, forming ion channels permeant to K+ > Na+ > Ca2+, was found and named amylosin. It is produced by B. amyloliquefaciens isolated from indoor air of moisture-damaged buildings. Amylosin was purified with an RP-HPLC and a monoisotopic mass of 1197 Da was determined with ESI-IT-MS. Furthermore, acid hydrolysis of amylosin followed by analysis of the amino acids with the GS-MS showed that it was a peptide. The presence of a chromophoric polyene group was found using a NMR spectroscopy. The quantification method developed for amylosin based on RP-HPLC-UV, using the macrolactone polyene, amphotericin B (MW 924), as a reference compound. The B. licheniformis strains isolated from a food poisoning case produced a lipopeptide, lichenysin A, that ruptured mammalian cell membranes and was purified with a LC. Lichenysin A was identified by its protonated molecules and sodium- and potassium- cationized molecules with MALDI-TOF-MS. Its protonated forms were observed at m/z 1007, 1021 and 1035. The amino acids of lichenysin A were analyzed with ESI-TQ-MS/MS and, after acid hydrolysis, the stereoisomeric forms of the amino acids with RP-HPLC. The indoor air isolates of the strain of B. amyloliquefaciens produced not only amylosin but also lipopeptides: the cell membrane-damaging surfactin and the fungicidal fengycin. They were identified with ESI-IT-MS observing their protonated molecules, the sodium- and potassium-cationized molecules and analysing the MS/MS spectra. The protonated molecules of surfactin and fengycin showed m/z values of 1009, 1023, and 1037 and 1450, 1463, 1493, and 1506, respectively. Cereulide (MW 1152) was purified with RP-HPLC from a food poisoning strain of B. cereus. Cereulide was identified with ESI-TQ-MS according to the protonated molecule observed at m/z 1154 and the ammonium-, sodium- and potassium-cationized molecules observed at m/z 1171, 1176, and 1192, respectively. The fragment ions of the MS/MS spectrum obtained from the protonated molecule of cereulide at m/z 1154 were also interpreted. We developed a quantification method for cereulide, using RP-HPLC-UV and valinomycin (MW 1110, which structurally resembles cereulide) as the reference compound. Furthermore, we showed empirically, using the BLM method, that the emetic toxin cereulide is a specific and effective potassium ionophore of whose toxicity target is especially the mitochondria.
Resumo:
Recent epidemiological studies have shown a consistent association of the mass concentration of urban air thoracic (PM10) and fine (PM2.5) particles with mortality and morbidity among cardiorespiratory patients. However, the chemical characteristics of different particulate size ranges and the biological mechanisms responsible for these adverse health effects are not well known. The principal aims of this thesis were to validate a high volume cascade impactor (HVCI) for the collection of particulate matter for physicochemical and toxicological studies, and to make an in-depth chemical and source characterisation of samples collected during different pollution situations. The particulate samples were collected with the HVCI, virtual impactors and a Berner low pressure impactor in six European cities: Helsinki, Duisburg, Prague, Amsterdam, Barcelona and Athens. The samples were analysed for particle mass, common ions, total and water-soluble elements as well as elemental and organic carbon. Laboratory calibration and field comparisons indicated that the HVCI can provide a unique large capacity, high efficiency sampling of size-segregated aerosol particles. The cutoff sizes of the recommended HVCI configuration were 2.4, 0.9 and 0.2 μm. The HVCI mass concentrations were in a good agreement with the reference methods, but the chemical composition of especially the fine particulate samples showed some differences. This implies that the chemical characterization of the exposure variable in toxicological studies needs to be done from the same HVCI samples as used in cell and animal studies. The data from parallel, low volume reference samplers provide valuable additional information for chemical mass closure and source assessment. The major components of PM2.5 in the virtual impactor samples were carbonaceous compounds, secondary inorganic ions and sea salt, whereas those of coarse particles (PM2.5-10) were soil-derived compounds, carbonaceous compounds, sea salt and nitrate. The major and minor components together accounted for 77-106% and 77-96% of the gravimetrically-measured masses of fine and coarse particles, respectively. Relatively large differences between sampling campaigns were observed in the organic carbon content of the PM2.5 samples as well as the mineral composition of the PM2.5-10 samples. A source assessment based on chemical tracers suggested clear differences in the dominant sources (e.g. traffic, residential heating with solid fuels, metal industry plants, regional or long-range transport) between the sampling campaigns. In summary, the field campaigns exhibited different profiles with regard to particulate sources, size distribution and chemical composition, thus, providing a highly useful setup for toxicological studies on the size-segregated HVCI samples.
Resumo:
Aerosol particles can cause detrimental environmental and health effects. The particles and their precursor gases are emitted from various anthropogenic and natural sources. It is important to know the origin and properties of aerosols to efficiently reduce their harmful effects. The diameter of aerosol particles (Dp) varies between ~0.001 and ~100 μm. Fine particles (PM2.5: Dp < 2.5 μm) are especially interesting because they are the most harmful and can be transported over long distances. The aim of this thesis is to study the impact on air quality by pollution episodes of long-range transported aerosols affecting the composition of the boundary-layer atmosphere in remote and relatively unpolluted regions of the world. The sources and physicochemical properties of aerosols were investigated in detail, based on various measurements (1) in southern Finland during selected long-range transport (LRT) pollution episodes and unpolluted periods and (2) over the Atlantic Ocean between Europe and Antarctica during a voyage. Furthermore, the frequency of LRT pollution episodes of fine particles in southern Finland was investigated over a period of 8 years, using long-term air quality monitoring data. In southern Finland, the annual mean PM2.5 mass concentrations were low but LRT caused high peaks of daily mean concentrations every year. At an urban background site in Helsinki, the updated WHO guideline value (24-h PM2.5 mean 25 μg/m3) was exceeded during 1-7 LRT episodes each year during 1999-2006. The daily mean concentrations varied between 25 and 49 μg/m3 during the episodes, which was 3-6 times higher than the mean concentration in the long term. The in-depth studies of selected LRT episodes in southern Finland revealed that biomass burning in agricultural fields and wildfires, occurring mainly in Eastern Europe, deteriorated air quality on a continental scale. The strongest LRT episodes of fine particles resulted from open biomass-burning fires but the emissions from other anthropogenic sources in Eastern Europe also caused significant LRT episodes. Particle mass and number concentrations increased strongly in the accumulation mode (Dp ~ 0.09-1 μm) during the LRT episodes. However, the concentrations of smaller particles (Dp < 0.09 μm) remained low or even decreased due to the uptake of vapours and molecular clusters by LRT particles. The chemical analysis of individual particles showed that the proportions of several anthropogenic particle types increased (e.g. tar balls, metal oxides/hydroxides, spherical silicate fly ash particles and various calcium-rich particles) in southern Finland during an LRT episode, when aerosols originated from the polluted regions of Eastern Europe and some open biomass-burning smoke was also brought in by LRT. During unpolluted periods when air masses arrived from the north, the proportions of marine aerosols increased. In unpolluted rural regions of southern Finland, both accumulation mode particles and small-sized (Dp ~ 1-3 μm) coarse mode particles originated mostly from LRT. However, the composition of particles was totally different in these size fractions. In both size fractions, strong internal mixing of chemical components was typical for LRT particles. Thus, the aging of particles has significant impacts on their chemical, hygroscopic and optical properties, which can largely alter the environmental and health effects of LRT aerosols. Over the Atlantic Ocean, the individual particle composition of small-sized (Dp ~ 1-3 μm) coarse mode particles was affected by continental aerosol plumes to distances of at least 100-1000 km from the coast (e.g. pollutants from industrialized Europe, desert dust from the Sahara and biomass-burning aerosols near the Gulf of Guinea). The rate of chloride depletion from sea-salt particles was high near the coasts of Europe and Africa when air masses arrived from polluted continental regions. Thus, the LRT of continental aerosols had significant impacts on the composition of the marine boundary-layer atmosphere and seawater. In conclusion, integration of the results obtained using different measurement techniques captured the large spatial and temporal variability of aerosols as observed at terrestrial and marine sites, and assisted in establishing the causal link between land-bound emissions, LRT and air quality.
Resumo:
Occupational rhinitis is mainly caused by work environment and not by stimuli encountered outside the workplace. It differs from rhinitis that is worsened by, but not mainly caused by, workplace exposures. Occupational rhinitis can develop in response to allergens, inhaled irritants, or corrosive gases. The thesis evaluated the use of challenge tests in occupational rhinitis diagnostics, studied the long-term health-related quality of life among allergic occupational rhinitis patients, and the allergens of wheat grain among occupational respiratory allergy patients. The diagnosed occupational rhinitis was mainly allergic rhinitis, which was caused by occupational agents, most commonly flours and animal allergens. The non-IgE-mediated rhinitis reactions were less frequent and caused more often asthma than rhinitis. Both nasal challenges and inhalation challenges were found to be safe tests. The inhalation challenge tests had considerably resource-intensive methodology. However, the evaluation of nasal symptoms and signs together with bronchial reactions saved time and expense compared with the organization of multiple individual challenges. The scoring criteria used matched well with the weighted amount of discharge ≥ 0.2 g and in most cases gave comparable results. The challenge tests are valuable tools when there is uncertainty whether the patient's exposure should be reduced or discontinued. It was found that continuing exposure decreases health-related quality of life among patients with allergic occupational rhinitis despite of rhinitis medications, still approximately ten years after the diagnosis. Health-related quality of life among occupational rhinitis patients without any longer occupational exposure was mainly similar than that of the healthy controls. This highlights the importance of the reduction and cessation of occupational exposure. To achieve this, 17% of occupational rhinitis patients had been re-educated. Alpha-amylase inhibitors, lipid transfer protein 2G, thaumatin -like protein, and peroxidase I were found to be relevant allergens in Finnish patients with occupational respiratory wheat allergy. Of these allergens, thaumatin-like protein and lipid transfer protein 2G were found as new allergens associated with baker's rhinitis and asthma. The knowledge of the new clinically relevant proteins can be used in the future in the development of better standardized diagnostic preparations.