4 resultados para Agriculture périurbaine

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective was to measure productivity growth and its components in Finnish agriculture, especially in dairy farming. The objective was also to compare different methods and models - both parametric (stochastic frontier analysis) and non-parametric (data envelopment analysis) - in estimating the components of productivity growth and the sensitivity of results with respect to different approaches. The parametric approach was also applied in the investigation of various aspects of heterogeneity. A common feature of the first three of five articles is that they concentrate empirically on technical change, technical efficiency change and the scale effect, mainly on the basis of the decompositions of Malmquist productivity index. The last two articles explore an intermediate route between the Fisher and Malmquist productivity indices and develop a detailed but meaningful decomposition for the Fisher index, including also empirical applications. Distance functions play a central role in the decomposition of Malmquist and Fisher productivity indices. Three panel data sets from 1990s have been applied in the study. The common feature of all data used is that they cover the periods before and after Finnish EU accession. Another common feature is that the analysis mainly concentrates on dairy farms or their roughage production systems. Productivity growth on Finnish dairy farms was relatively slow in the 1990s: approximately one percent per year, independent of the method used. Despite considerable annual variation, productivity growth seems to have accelerated towards the end of the period. There was a slowdown in the mid-1990s at the time of EU accession. No clear immediate effects of EU accession with respect to technical efficiency could be observed. Technical change has been the main contributor to productivity growth on dairy farms. However, average technical efficiency often showed a declining trend, meaning that the deviations from the best practice frontier are increasing over time. This suggests different paths of adjustment at the farm level. However, different methods to some extent provide different results, especially for the sub-components of productivity growth. In most analyses on dairy farms the scale effect on productivity growth was minor. A positive scale effect would be important for improving the competitiveness of Finnish agriculture through increasing farm size. This small effect may also be related to the structure of agriculture and to the allocation of investments to specific groups of farms during the research period. The result may also indicate that the utilization of scale economies faces special constraints in Finnish conditions. However, the analysis of a sample of all types of farms suggested a more considerable scale effect than the analysis on dairy farms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate intensity, productivity and efficiency in agriculture in Finland and show implications for N and P fertiliser management. Environmental concerns relating to agricultural production have been and still are focused on arguments about policies that affect agriculture. These policies constrain production while demand for agricultural products such as food, fibre and energy continuously increase. Therefore the importance of increasing productivity is a great challenge to agriculture. Over the last decades producers have experienced several large changes in the production environment such as the policy reform when Finland joined the EU 1995. Other and market changes occurred with the further EU enlargement with neighbouring countries in 2005 and with the decoupling of supports over the 2006-2007 period. Decreasing prices a decreased number of farmers and decreased profitability in agricultural production have resulted from these changes and constraints and of technological development. It is known that the accession to the EU 1995 would herald changes in agriculture. Especially of interest was how the sudden changes in prices of commodities on especially those of cereals, decreased by 60%, would influence agricultural production. The knowledge of properties of the production function increased in importance as a consequence of price changes. A research on the economic instruments to regulate productions was carried out and combined with earlier studies in paper V. In paper I the objective was to compare two different technologies, the conventional farming and the organic farming, determine differences in productivity and technical efficiency. In addition input specific or environmental efficiencies were analysed. The heterogeneity of agricultural soils and its implications were analysed in article II. In study III the determinants of technical inefficiency were analysed. The aspects and possible effects of the instability in policies due to a partial decoupling of production factors and products were studied in paper IV. Consequently connection between technical efficiency based on the turnover and the sales return was analysed in this study. Simple economic instruments such as fertiliser taxes have a direct effect on fertiliser consumption and indirectly increase the value of organic fertilisers. However, fertiliser taxes, do not fully address the N and P management problems adequately and are therefore not suitable for nutrient management improvements in general. Productivity of organic farms is lower on average than conventional farms and the difference increases when looking at selling returns only. The organic sector needs more research and development on productivity. Livestock density in organic farming increases productivity, however, there is an upper limit to livestock densities on organic farms and therefore nutrient on organic farms are also limited. Soil factors affects phosphorous and nitrogen efficiency. Soils like sand and silt have lower input specific overall efficiency for nutrients N and P. Special attention is needed for the management on these soils. Clay soils and soils with moderate clay content have higher efficiency. Soil heterogeneity is cause for an unavoidable inefficiency in agriculture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture-mediated habitat loss and degradation together with climate change are among the greatest global threats to species, communities, and ecosystem functioning. During the last century, more than 50% of the world's wetlands have been lost and agricultural activities have subjected wetland species to increased isolation and decreased quality of habitats. Likewise, as a part of agricultural intensification, the use of pesticides has increased notably, and pesticide residues occur frequently in wetlands making the exposure of wetland organisms to pesticides highly probable. In this thesis, a set of ecotoxicological and landscape ecological studies were carried out to investigate pesticide-effects on tadpoles, and species-habitat relationships of amphibians in agricultural landscapes. The results show that the fitness of R. temporaria tadpoles can be negatively affected by sublethal pesticide concentrations, and that pesticides may increase the costs of response to natural environmental stressors. However, tadpoles may also be able to compensate for some of the negative effects of pesticides. The results further demonstrate that both historic and current-day agricultural land use can negatively impact amphibians, but that in some cases the costs of living in agricultural habitats may only become apparent when amphibians face other environmental stressors, such as drought. Habitat heterogeneity may, however, increase the persistence of amphibians in agricultural landscapes. Hence, the results suggest that amphibians are likely to be affected by agricultural processes that operate at several spatial and temporal scales, and that it is probable that various processes related to current-day agriculture will affect both larval and adult amphibians. The results imply that maintaining dense wetland patterns could enhance persistence of amphibian populations in agricultural habitats, and indicate that heterogeneous landscapes may lower the risk of regional amphibian population declines under extreme weather perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture’s contribution to climate change is controversial as it is a significant source of greenhouse gases but also a sink of carbon. Hence its economic and technological potential to mitigate climate change have been argued to be noteworthy. However, social profitability of emission mitigation is a result from factors among emission reductions such as surface water quality impact or profit from production. Consequently, to value comprehensive results of agricultural climate emission mitigation practices, these co-effects to environment and economics should be taken into account. The objective of this thesis was to develop an integrated economic and ecological model to analyse the social welfare of crop cultivation in Finland on distinctive cultivation technologies, conventional tillage and conservation tillage (no-till). Further, we ask whether it would be privately or socially profitable to allocate some of barley cultivation for alternative land use, such as green set-aside or afforestation, when production costs, GHG’s and water quality impacts are taken into account. In the theoretical framework we depict the optimal input use and land allocation choices in terms of environmental impacts and profit from production and derive the optimal tax and payment policies for climate and water quality friendly land allocation. The empirical application of the model uses Finnish data about production cost and profit structure and environmental impacts. According to our results, given emission mitigation practices are not self-evidently beneficial for farmers or society. On the contrary, in some cases alternative land allocation could even reduce social welfare, profiting conventional crop cultivation. This is the case regarding mineral soils such as clay and silt soils. On organic agricultural soils, climate mitigation practices, in this case afforestation and green fallow give more promising results, decreasing climate emissions and nutrient runoff to water systems. No-till technology does not seem to profit climate mitigation although it does decrease other environmental impacts. Nevertheless, the data behind climate emission mitigation practices impact to production and climate is limited and partly contradictory. More specific experiment studies on interaction of emission mitigation practices and environment would be needed. Further study would be important. Particularly area specific production and environmental factors and also food security and safety and socio-economic impacts should be taken into account.