40 resultados para Advanced pharmaceutical services
em Helda - Digital Repository of University of Helsinki
Resumo:
Farmaseuttisilla palveluilla tarkoitetaan apteekkien palveluita, joissa hyödynnetään apteekin farmaseuttisen henkilökunnan tietoja ja taitoja. Farmaseuttiset palvelut voidaan jakaa farmaseuttisiin perus- ja erityispalveluihin. Farmaseuttiset peruspalvelut kattavat apteekkien lakisääteiset tehtävät, kun taas farmaseuttisilla erityispalveluilla pyritään ottamaan aktiivisempi rooli asiakkaan terveyden edistämisessä. Koneellinen annosjakelupalvelu on farmaseuttinen erityispalvelu. Koneellisessa annosjakelupalvelussa lääkkeet jaetaan kerta-annospusseihin annostusajankohdan mukaan. Kun uusi asiakas aloittaa koneellinen annosjakelupalvelun, tarkistetaan asiakkaan lääkitys yhteensopimattomien ja turhien lääkkeiden osalta. Palvelun aloitushetkellä huomioidaan myös lääkevalmisteiden sopivuus koneelliseen annosjakeluun sekä tarkistetaan valmisteiden annosteluajankohdat. Koneellisessa annosjakelupalvelussa asiakkaan lääkehoidosta muodostetaan lääkityskortti, josta kokonaislääkehoito on helppo tarkistaa. Erikoistyön tavoitteena oli selvittää millainen lääkehoidon arviointi tai tarkistus koneellisen annosjakelupalvelun aloittamisen yhteydessä tehdään ja miten palvelun aloittavien asiakkaiden kokonaislääkehoitotieto saadaan selvitettyä. Lisäksi selvitettiin millaisia muutoksia lääkehoitoihin tehdään palvelun aloittamisen yhteydessä, mitkä ovat muutosten syyt sekä millainen on asiakkaan kokonaislääkehoito. Kyselylomake lähetettiin kaikkiin apteekkeihin, jotka tilasivat koneellista annosjakelua sopimusvalmistuksena Espoonlahden apteekilta syyskuussa 2010. Tutkimus suoritettiin semistrukturoidulla kirjallisella kyselyllä, joka sisälsi sekä avoimia kysymyksiä että monivalintakysymyksiä. Kyselyyn saatiin 147 vastausta ja vastausprosentiksi muodostui 45. Vastauksia kyselyyn saatiin koko Mannersuomen alueelta ja kaikkien kokoluokkien apteekeilta. Koneellisen annosjakelupalvelun aloittavat henkilöt ovat pääasiassa iäkkäitä, jotka ovat kotihoidon piirissä, asuvat hoitokodissa tai palveluasumisen yksikössä. Asiakkaiden lääkitystietojen keräämisessä hyödynnetään lääkityskorttia, mutta lääkityskortin tietoja päivitetään myös muista lähteistä. Asiakkaiden lääkityksille tehdään useimmiten lääkehoidon tarkistus moniammatillisena yhteistyönä. Lääkehoidolle tehdyt muutokset johtuvat pääasiassa lääkevaihdosta, annosjakelukoneen lääkevalikoimasta tai puolittamisen välttämisestä. Lääkehoidoissa on vain vähän yhteisvaikutuksia, jotka johtavat lääkevalmisteen käytön lopettamiseen. Lääkehoidon tarkistuksella ei ollut suurta vaikutusta asiakkaiden käyttämien lääkevalmisteiden määrään. Palvelun aloittamisen jälkeen asiakkaalla on käytössään keskimäärin 11 lääkevalmistetta, joista seitsemää jaellaan koneellisesti. Lääkeaineryhmistä eniten käytettyjä ovat hermostoon vaikuttavat sekä sydän- ja verisuonisairauksien lääkkeet, joita kumpaakin on käytössä keskimäärin kolme jokaisella uudella koneellisen annosjakelupalvelun asiakkaalla sekä palvelun aloittamista ennen että sen jälkeen.
Resumo:
The surface properties of solid state pharmaceutics are of critical importance. Processing modifies the surfaces and effects surface roughness, which influences the performance of the final dosage form in many different levels. Surface roughness has an effect on, e.g., the properties of powders, tablet compression and tablet coating. The overall goal of this research was to understand the surface structures of pharmaceutical surfaces. In this context the specific purpose was to compare four different analysing techniques (optical microscopy, scanning electron microscopy, laser profilometry and atomic force microscopy) in various pharmaceutical applications where the surfaces have quite different roughness scale. This was done by comparing the image and roughness analysing techniques using powder compacts, coated tablets and crystal surfaces as model surfaces. It was found that optical microscopy was still a very efficient technique, as it yielded information that SEM and AFM imaging are not able to provide. Roughness measurements complemented the image data and gave quantitative information about height differences. AFM roughness data represents the roughness of only a small part of the surface and therefore needs other methods like laser profilometer are needed to provide a larger scale description of the surface. The new developed roughness analysing method visualised surface roughness by giving detailed roughness maps, which showed local variations in surface roughness values. The method was able to provide a picture of the surface heterogeneity and the scale of the roughness. In the coating study, the laser profilometer results showed that the increase in surface roughness was largest during the first 30 minutes of coating when the surface was not yet fully covered with coating. The SEM images and the dispersive X-ray analysis results showed that the surface was fully covered with coating within 15 to 30 minutes. The combination of the different measurement techniques made it possible to follow the change of surface roughness and development of polymer coating. The optical imaging techniques gave a good overview of processes affecting the whole crystal surface, but they lacked the resolution to see small nanometer scale processes. AFM was used to visualize the nanoscale effects of cleaving and reveal the full surface heterogeneity, which underlies the optical imaging. Ethanol washing changed small (nanoscale) structure to some extent, but the effect of ethanol washing on the larger scale was small. Water washing caused total reformation of the surface structure at all levels.
Resumo:
The ability to deliver the drug to the patient in a safe, efficacious and cost-effective manner depends largely on the physicochemical properties of the active pharmaceutical ingredient (API) in the solid state. In this context, crystallization is of critical importance in pharmaceutical industry, as it defines physical and powder properties of crystalline APIs. An improved knowledge of the various aspects of crystallization process is therefore needed. The overall goal of this thesis was to gain better understanding of the relationships between crystallization, solid-state form and properties of pharmaceutical solids with a focus on a crystal engineering approach to design technological properties of APIs. Specifically, solid-state properties of the crystalline forms of the model APIs, erythromycin A and baclofen, and the influence of solvent on their crystallization behavior were investigated. In addition, the physical phenomena associated with wet granulation and hot-melting processing of the model APIs were examined at the molecular level. Finally, the effect of crystal habit modification of a model API on its tabletting properties was evaluated. The thesis enabled the understanding of the relationship between the crystalline forms of the model APIs, which is of practical importance for solid-state control during processing and storage. Moreover, a new crystalline form, baclofen monohydrate, was discovered and characterized. Upon polymorph screening, erythromycin A demonstrated high solvate-forming propensity thus emphasizing the need for careful control of the solvent effects during formulation. The solvent compositions that yield the desirable crystalline form of erythromycin A were defined. Furthermore, new examples on solvent-mediated phase transformations taking place during wet granulation of baclofen and hot-melt processing of erythromycin A dihydrate with PEG 6000 are reported. Since solvent-mediated phase transformations involve the crystallization of a stable phase and hence affect the dissolution kinetics and possibly absorption of the API these transformations must be well documented. Finally, a controlled-crystallization method utilizing HPMC as a crystal habit modifier was developed for erythromycin A dihydrate. The crystals with modified habit were shown to posses improved compaction properties as compared with those of unmodified crystals. This result supports the idea of morphological crystal engineering as a tool for designing technological properties of APIs and is of utmost practical interest.
Resumo:
Effective processing of powdered particles can facilitate powder handling and result in better drug product performance, which is of great importance in the pharmaceutical industry where the majority of active pharmaceutical ingredients (APIs) are delivered as solid dosage forms. The purpose of this work was to develop a new ultrasound-assisted method for particle surface modification and thin-coating of pharmaceutical powders. The ultrasound was used to produce an aqueous mist with or without a coating agent. By using the proposed technique, it was possible to decrease the interparticular interactions and improve rheological properties of poorly-flowing water-soluble powders by aqueous smoothing of the rough surfaces of irregular particles. In turn, hydrophilic polymer thin-coating of a hydrophobic substance diminished the triboelectrostatic charge transfer and improved the flowability of highly cohesive powder. To determine the coating efficiency of the technique, the bioactive molecule β-galactosidase was layered onto the surface of powdered lactose particles. Enzyme-treated materials were analysed by assaying the quantity of the reaction product generated during enzymatic cleavage of the milk sugar. A near-linear increase in the thickness of the drug layer was obtained during progressive treatment. Using the enzyme coating procedure, it was confirmed that the ultrasound-assisted technique is suitable for processing labile protein materials. In addition, this pre-treatment of milk sugar could be used to improve utilization of lactose-containing formulations for populations suffering from severe lactose intolerance. Furthermore, the applicability of the thin-coating technique for improving homogeneity of low-dose solid dosage forms was shown. The carrier particles coated with API gave rise to uniform distribution of the drug within the powder. The mixture remained homogeneous during further tabletting, whereas the reference physical powder mixture was subject to segregation. In conclusion, ultrasound-assisted surface engineering of pharmaceutical powders can be effective technology for improving formulation and performance of solid dosage forms such as dry powder inhalers (DPI) and direct compression products.
Resumo:
The range of consumer health and medicines information sources has diversified along with the increased use of the Internet. This has led to a drive to develop medicines information services and to better incorporate the Internet and e-mail into routine practice in health care and in community pharmacies. To support the development of such services more information is needed about the use of online information by consumers, particularly of those who may be the most likely to use and to benefit from the new sources and modes of medicines communication. This study explored the role and utilization of the Internet-based medicines information and information services in the context of a wider network of information sources accessible to the public in Finland. The overall aim was to gather information to develop better and more accessible sources of information for consumers and services to better meet the needs of consumers. Special focus was on the needs and information behavior among people with depression and using antidepressant medicines. This study applied both qualitative and quantitative methods. Consumer medicines information needs and sources were identified by analyzing the utilization of the University Pharmacy operated national drug information call center (Study I) and surveying Finnish adults (n=2348) use of the different medicines information sources (Study II). The utilization of the Internet as a source of antidepressant information among people with depression was explored by focus group discussions among people with depression and with current or past use of the antidepressant(s) (n=29, Studies III & IV). Pharmacy response to the needs of consumers in term of providing e-mail counseling was assessed by conducting a virtual pseudo customer study among the Finnish community pharmacies (n=161, Study V). Physicians and pharmacists were the primary sources of medicines information. People with mental disorders were more frequent users of telephone- and Internet-based medicines information sources and patient information leaflets than people without mental disorders. These sources were used to complement rather than replace information provided face-to-face by health professionals. People with depression used the Internet to seek facts about antidepressants, to share experiences with peers, and for the curiosity. They described that the access to online drug information was empowering. Some people reported lacking the skills necessary to assess the quality of online information. E-mail medication counseling services provided by community pharmacies were rare and varied in quality. Study results suggest that rather than discouraging the use of the Internet, health professionals should direct patients to use accurate and reliable sources of online medicines information. Health care providers, including community pharmacies should also seek to develop new ways of communicating information about medicines with consumers. This study determined that people with depression and using antidepressants need services enabling interactive communication not only with health care professionals, but also with peers. Further research should be focused on developing medicines information service facilitating communication among different patient and consumer groups.
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.
Resumo:
Migration within the European Union (EU) has increased since the Union was established. Community pharmacies provide open access to health care services and can be the first, most frequently used or even the only contact with a nation s health care system among mobile community residents. In some of the mass-migration areas in Southern Europe, most of the customers may represent mobile citizens of foreign background. This has not always been taken into consideration in the development of community pharmacy services. Mobile patients have been on the EU's health policy agenda, but they have seldom been mentioned in the context of community pharmacies. In most of the EU member states, governments control the specific legislation concerning community pharmacies and there is no harmonised pharmaceutical policy or consistent minimal standards for community pharmacy services in the EU. The aim of this study was to understand medication use, the role of community pharmacies and the symptom mitigation process of mobile community residents. Finns living in Spain were used as an example to examine how community pharmacies in a EU member state meet the needs of mobile community residents. The data were collected by a survey in 2002 (response rate 53%, n= 533) and by five focus group discussions in 2006 (n=30). A large number (70%) of the respondents had moved to Spain for health reasons and suffered from chronic morbidity. Community pharmacies had an important role in the healthcare of mobile community residents and the respondents were mostly satisfied with these services. However, several medication safety risks related to community pharmacy practices were identified: 1) Availability of prescription medicines without prescription (e.g., antibiotics, sleeping pills, Viagra®, asthma medications, cardiovascular medicines, psoriasis medicines and analgesics); 2) Irrational use of medicines (e.g., 41% of antibiotic users had bought their antibiotics without a prescription, and the most common reasons for antibiotic self-medication were symptomatic common colds and sore throats); 3) Language barriers between patients and pharmacy professionals; 4) Lack of medication counselling; 5) Unqualified pharmacy personnel providing pharmacotherapy. A fifth of the respondents reported experiencing problems during pharmacy visits in Spain, and the lack of a common language was the source of most of these problems. The findings of this study indicate that regulations and their enforcement can play a crucial role in actually assuring the rational and safe use of medicines. These results can be used in the development of pharmaceutical and healthcare policies in the EU. It is important to define consistent minimum standards for community pharmacy services in the EU. Then, the increasing number of mobile community residents could access safe and high quality health care services, including community pharmacy services, in every member state within the EU.
Resumo:
There is a need for better understanding of the processes and new ideas to develop traditional pharmaceutical powder manufacturing procedures. Process analytical technology (PAT) has been developed to improve understanding of the processes and establish methods to monitor and control processes. The interest is in maintaining and even improving the whole manufacturing process and the final products at real-time. Process understanding can be a foundation for innovation and continuous improvement in pharmaceutical development and manufacturing. New methods are craved for to increase the quality and safety of the final products faster and more efficiently than ever before. The real-time process monitoring demands tools, which enable fast and noninvasive measurements with sufficient accuracy. Traditional quality control methods have been laborious and time consuming and they are performed off line i.e. the analysis has been removed from process area. Vibrational spectroscopic methods are responding this challenge and their utilisation have increased a lot during the past few years. In addition, other methods such as colour analysis can be utilised in noninvasive real-time process monitoring. In this study three pharmaceutical processes were investigated: drying, mixing and tabletting. In addition tablet properties were evaluated. Real-time monitoring was performed with NIR and Raman spectroscopies, colour analysis, particle size analysis and compression data during tabletting was evaluated using mathematical modelling. These methods were suitable for real-time monitoring of pharmaceutical unit operations and increase the knowledge of the critical parameters in the processes and the phenomena occurring during operations. They can improve our process understanding and therefore, finally, enhance the quality of final products.
Resumo:
In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms
Resumo:
The objective of the dissertation was to determine the concept of sustainable development according to current understanding and to analyze the structuration of sustainable daily life and how it varies between different groups. The present dissertation is both a literature-based theoretical study and data-based empirical research. The theoretical framework of the study was a greated model of the Structuration of Sustainability in Everyday Life. The model is based on a synthesis of Giddens Theory of Structuration (1984), Spaargaren JA van Vliet's Theory of Consumption as Social Practices (2000) and principles of sustainable development. According to the model created, sustainable everyday life is generated in a context of internal and external factors compromising the interests of ecosystems, society and business. The literature used in the thesis included international and national statements on sustainable development and research into sustainability and the transition to sustainable societies. The data were collected at Helsinki Metropolia University of Applied Sciences. The discretionary sample consisted of students of social services (n = 210) and were collected using the semantic differential technique. The data were analyzed using quantitative and qualitative methods. The results showed that the value placed on ecological, economic and social sustainability increased with age. Activity in non governmental organizations was associated with the acceptance of sustainable development as a whole and especially with global responsibility. Women's everyday life promoted sustainability more than men´s. People living in Helsinki had more sustainable ways of living than those living in the surrounding municipalities because of greater recycling and the low importance given to ownership. Prefering vegetarian food turned out to be a real opportunity for a more sustainable way of living because there were few barriers identified. Contradictory human behavior occurred when advanced sustainable consumer were ready to risk their health. The importance of communality was high and it was considered an aspect of health. The most significant obstacles to sustainable development in daily life were high costs, lack of knowledge and busyness. Similar attitudes towards sustainable development translate into different people´s behavior, which indicates complexities of the behaviour change in the context of sustainable development. The role of non governmental organizations is significant in increasing global responsibility. Education presents an opportunity to increase sustainability, but there are challenges to face from system thinking and in understanding entities in a state of transition towards sustainable everyday life. The responsibility of policy makers is paramount because high costs create a barrier to a sustainable way of living. The implementation of the concept of sustainable development should be focused on the planetary ethics which cover humans, animals, plants and ecosystems. Keywords: Sustainable development, sustainable thinking, behaviour change