14 resultados para Active ingredients
em Helda - Digital Repository of University of Helsinki
Resumo:
Effective processing of powdered particles can facilitate powder handling and result in better drug product performance, which is of great importance in the pharmaceutical industry where the majority of active pharmaceutical ingredients (APIs) are delivered as solid dosage forms. The purpose of this work was to develop a new ultrasound-assisted method for particle surface modification and thin-coating of pharmaceutical powders. The ultrasound was used to produce an aqueous mist with or without a coating agent. By using the proposed technique, it was possible to decrease the interparticular interactions and improve rheological properties of poorly-flowing water-soluble powders by aqueous smoothing of the rough surfaces of irregular particles. In turn, hydrophilic polymer thin-coating of a hydrophobic substance diminished the triboelectrostatic charge transfer and improved the flowability of highly cohesive powder. To determine the coating efficiency of the technique, the bioactive molecule β-galactosidase was layered onto the surface of powdered lactose particles. Enzyme-treated materials were analysed by assaying the quantity of the reaction product generated during enzymatic cleavage of the milk sugar. A near-linear increase in the thickness of the drug layer was obtained during progressive treatment. Using the enzyme coating procedure, it was confirmed that the ultrasound-assisted technique is suitable for processing labile protein materials. In addition, this pre-treatment of milk sugar could be used to improve utilization of lactose-containing formulations for populations suffering from severe lactose intolerance. Furthermore, the applicability of the thin-coating technique for improving homogeneity of low-dose solid dosage forms was shown. The carrier particles coated with API gave rise to uniform distribution of the drug within the powder. The mixture remained homogeneous during further tabletting, whereas the reference physical powder mixture was subject to segregation. In conclusion, ultrasound-assisted surface engineering of pharmaceutical powders can be effective technology for improving formulation and performance of solid dosage forms such as dry powder inhalers (DPI) and direct compression products.
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.
Resumo:
In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms
Resumo:
Mitochondria have evolved from endosymbiotic alpha-proteobacteria. During the endosymbiotic process early eukaryotes dumped the major component of the bacterial cell wall, the peptidoglycan layer. Peptidoglycan is synthesized and maintained by active-site serine enzymes belonging to the penicillin-binding protein and the β-lactamase superfamily. Mammals harbor a protein named LACTB that shares sequence similarity with bacterial penicillin-binding proteins and β-lactamases. Since eukaryotes lack the synthesis machinery for peptidoglycan, the physiological role of LACTB is intriguing. Recently, LACTB has been validated in vivo to be causative for obesity, suggesting that LACTB is implicated in metabolic processes. The aim of this study was to investigate the phylogeny, structure, biochemistry and cell biology of LACTB in order to elucidate its physiological function. Phylogenetic analysis revealed that LACTB has evolved from penicillin binding-proteins present in the bacterial periplasmic space. A structural model of LACTB indicates that LACTB shares characteristic features common to all penicillin-binding proteins and β-lactamases. Recombinat LACTB protein expressed in E. coli was recovered in significant quantities. Biochemical and cell biology studies showed that LACTB is a soluble protein localized in the mitochondrial intermembrane space. Further analysis showed that LACTB preprotein underwent proteolytic processing disclosing an N-terminal tetrapeptide motif also found in a set of cell death-inducing proteins. Electron microscopy structural studies revealed that LACTB can polymerize to form stable filaments with lengths ranging from twenty to several hundred nanometers. These data suggest that LACTB filaments define a distinct microdomain in the intermembrane space. A possible role of LACTB filaments is proposed in the intramitochondrial membrane organization and microcompartmentation. The implications of these findings offer novel insight into the evolution of mitochondria. Further studies of the LACTB function might provide a tool to treat mitochondria-related metabolic diseases.
Resumo:
The aim of this licentiate thesis is to analyse how femininity is constructed in twelve portrait interviews of women in the dailies Dagens Nyheter (Stockholm) and Hufvudstadsbladet (Helsinki) in September 1996, and to explore the portrait interview as a media genre. The qualitative analysis has a feminist and constructionist perspective and is connected to critical text analysis. It was carried out on two levels: first, femininity is identified on the linguistic level by choice of words, and second on the level of content (topical motifs/themes). The portrait interview as a genre constitutes a third dimension in the analysis: The aim is not towards the identification of femininity, but rather towards the identification of the portrait interview a relatively unexplored media genre. References (Swedish: omtal) to the principal character (or protagonist) are traced mainly through reference chains which consist of names, pronouns and substantive phrases. The interviewees were referred to by their full names in Dagens Nyheter (with the exception of the oldest and youngest interviewees, both of whom were mainly referred to by their first names), while the style of reference varied more in Hufvudstadsbladet. The position of the principal character was also analysed through her relation in the text to minor characters from her working life and from her private life. These minor characters maintained their subordinate positions in all of the portraits except that of the youngest principal character, in which the subsidiary voices became at least as strong as the voice of the principal character. Three frequently-recurring topical motifs occurred in the portraits: The first involved explanations for the principal character s success divided into three categories, agent, affect and ambition, the second concerned using journeys or trips as symbols for turning points in life, and the third referred to the ambiguity in the contradiction between private (family/other private life) and public (work) life. This ambiguity is connected to the portrait interview as a text type (genre) which features conclusions at the end of portraits, which in turn is characteristic of reportage. However, the analysis showed that the conclusions of the portrait interviews often also included elements of ambiguity. This was evident in the contradictions be14 tween private and public life that arose in the portrait interviews that focused on these two spheres. The portraits that focused on the principal character s public life showed ambiguity on a more general level concerning questions about being a woman and having a profession, and they often ended with a description of some details of her private life. The women in the portraits were all constructed as being successful, in terms of having achieved direct success, reflective success or success in the form of life wisdom. The women of direct success were described as ambitious individuals with no sidetracks on their life paths, while those of reflective success were described as active heroines who had received help from different agents, who could use their affects as enriching ingredients in life, but who in the end had control over their own lives (life stories). The elderly women were constructed as having achieved life wisdom and their portraits were focused upon the past. The portrait interview as a genre is characterised by journalistic freedom (in relation to the more strict news genre), by a now room (Swedish nurum ) where the journalist meets the principal character (usually via spoken dialogue that she or he transforms into written text to be read by a mass-media audience) and by the relatively closed structure of the portrait. The portrait is relatively independent in relation to the news genre and in relation to the context of what has previously been written, what is being written at the time and what will be written in the future the principal character does not need to belong to the newspaper s usual gallery of actors. Furthermore, the principal character is constructed as being independent in relation to the subsidiary characters and other media actors. The conflict is within the principal character herself and within her life story, unlike the news genre in which equal actors are in conflict with each other. The portrait is also independent in relation to the news lifespan; the publishing timetable is not as strict as in the news genre, but is still dependent on the factors initiating the portrait. The enclosures consist of a raw analysis of two of twelve portrait interviews and of copies of all portraits.
Resumo:
Nowadays growing number of new active pharmaceutical ingredients (API) have large molecular weight and are hydrophobic. The energy of their crystal lattice is bigger and polarity has decreased. This leads to weakened solubility and dissolution rate of the drug. These properties can be enhanced for example by amorphization. Amorphous form has the best dissolution rate in the solid state. In the amorphous form drug molecules are randomly arranged, so the energy required to dissolve molecules is lower compared to the crystalline counterpart. The disadvantage of amorphous form is that it is unstable. Amorphous form tends to crystallize. Stability of amorphous form can be enhanced by adding an adjuvant to drug product. Adjuvant is usually a polymer. Polymers prevent crystallization both by forming bonds with API molecules and by steric hindrance. The key thing in stabilizing amorphous form is good miscibility between API and polymer. They have to be mixed in a molecular level so that the polymer is able to prevent crystallization. The aim of this work was to study miscibility of drug and polymer and stability of their dispersion with different analytical methods. Amorphous dispersions were made by rotary evaporator and freeze dryer. Amorphicity was confirmed with X-ray powder diffraction (XRPD) right after preparation. Itraconazole and theophylline were the chosen molecules to be stabilized. Itraconazole was expected to be easier and theophylline more difficult to stabilize. Itraconazole was stabilized with HPMC and theophylline was stabilized with PVP. Miscibility was studied with XRPD and differential scanning calorimetry (DSC). In addition it was studied with polarized light microscope if miscibility was possible to see visually. Dispersions were kept in stressed conditions and the crystallization was analyzed with XRPD. Stability was also examined with isothermal microcalorimetry (IMC). The dispersion of itraconazole and theophylline 40/60 (w/w) was completely miscible. It was proved by linear combination of XRPD results and single glass transition temperature in DSC. Homogenic well mixed film was observed with light microscope. Phase separation was observed with other compositions. Dispersions of theophylline and PVP mixed only partly. Stability of itraconazole dispersions were better than theophylline dispersions which were mixed poorer. So miscibility was important thing considering stability. The results from isothermal microcalorimetry were similar to results from conventional stability studies. Complementary analytical methods should be used when studying miscibility so that the results are more reliable. Light microscope is one method in addition to mostly used XRPD and DSC. Analyzing light microscope photos is quite subjective but it gives an idea of miscibility. Isothermal microcalorimetry can be one option for conventional stability studies. If right conditions can be made where the crystallization is not too fast, it may be possible to predict stability with isothermal microcalorimetry.
Resumo:
Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.