2 resultados para Abstract differential equations
em Helda - Digital Repository of University of Helsinki
Resumo:
The monograph dissertation deals with kernel integral operators and their mapping properties on Euclidean domains. The associated kernels are weakly singular and examples of such are given by Green functions of certain elliptic partial differential equations. It is well known that mapping properties of the corresponding Green operators can be used to deduce a priori estimates for the solutions of these equations. In the dissertation, natural size- and cancellation conditions are quantified for kernels defined in domains. These kernels induce integral operators which are then composed with any partial differential operator of prescribed order, depending on the size of the kernel. The main object of study in this dissertation being the boundedness properties of such compositions, the main result is the characterization of their Lp-boundedness on suitably regular domains. In case the aforementioned kernels are defined in the whole Euclidean space, their partial derivatives of prescribed order turn out to be so called standard kernels that arise in connection with singular integral operators. The Lp-boundedness of singular integrals is characterized by the T1 theorem, which is originally due to David and Journé and was published in 1984 (Ann. of Math. 120). The main result in the dissertation can be interpreted as a T1 theorem for weakly singular integral operators. The dissertation deals also with special convolution type weakly singular integral operators that are defined on Euclidean spaces.
Resumo:
This thesis consists of three articles on Orlicz-Sobolev capacities. Capacity is a set function which gives information of the size of sets. Capacity is useful concept in the study of partial differential equations, and generalizations of exponential-type inequalities and Lebesgue point theory, and other topics related to weakly differentiable functions such as functions belonging to some Sobolev space or Orlicz-Sobolev space. In this thesis it is assumed that the defining function of the Orlicz-Sobolev space, the Young function, satisfies certain growth conditions. In the first article, the null sets of two different versions of Orlicz-Sobolev capacity are studied. Sufficient conditions are given so that these two versions of capacity have the same null sets. The importance of having information about null sets lies in the fact that the sets of capacity zero play similar role in the Orlicz-Sobolev space setting as the sets of measure zero do in the Lebesgue space and Orlicz space setting. The second article continues the work of the first article. In this article, it is shown that if a Young function satisfies certain conditions, then two versions of Orlicz-Sobolev capacity have the same null sets for its complementary Young function. In the third article the metric properties of Orlicz-Sobolev capacities are studied. It is usually difficult or impossible to calculate a capacity of a set. In applications it is often useful to have estimates for the Orlicz-Sobolev capacities of balls. Such estimates are obtained in this paper, when the Young function satisfies some growth conditions.