5 resultados para Aboriginal and Torres Strait Islander population
em Helda - Digital Repository of University of Helsinki
Resumo:
Background and aims. Type 1 diabetes (T1D), an autoimmune disease in which the insulin producing beta cells are gradually destroyed, is preceded by a prodromal phase characterized by appearance of diabetes-associated autoantibodies in circulation. Both the timing of the appearance of autoantibodies and their quality have been used in the prediction of T1D among first-degree relatives of diabetic patients (FDRs). So far, no general strategies for identifying individuals at increased disease risk in the general population have been established, although the majority of new cases originate in this population. The current work aimed at assessing the predictive role of diabetes-associated immunologic and metabolic risk factors in the general population, and comparing these factors with data obtained from studies on FDRs. Subjects and methods. Study subjects in the current work were subcohorts of participants of the Childhood Diabetes in Finland Study (DiMe; n=755), the Cardiovascular Risk in Young Finns Study (LASERI; n=3475), and the Finnish Type 1 Diabetes Prediction and Prevention Study (DIPP) Study subjects (n=7410). These children were observed for signs of beta-cell autoimmunity and progression to T1D, and the results obtained were compared between the FDRs and the general population cohorts. --- Results and conclusions. By combining HLA and autoantibody screening, T1D risks similar to those reported for autoantibody-positive FDRs are observed in the pediatric general population. Progression rate to T1D is high in genetically susceptible children with persistent multipositivity. Measurement of IAA affinity failed in stratifying the risk assessment in young IAA-positive children with HLA-conferred disease susceptibility, among whom affinity of IAA did not increase during the prediabetic period. Young age at seroconversion, increased weight-for-height, decreased early insulin response, and increased IAA and IA-2A levels predict T1D in young children with genetic disease susceptibility and signs of advanced beta-cell autoimmunity. Since the incidence of T1D continues to increase, efforts aimed at preventing T1D are important, and reliable disease prediction is needed both for intervention trials and for effective and safe preventive therapies in the future. Our observations confirmed that combined HLA-based screening and regular autoantibody measurements reveal similar disease risks in pediatric general population as those seen in prediabetic FDRs, and that risk assessment can be stratified further by studying glucose metabolism of prediabetic subjects. As these screening efforts are feasible in practice, the knowledge now obtained can be exploited while designing intervention trials aimed at secondary prevention of T1D.
Resumo:
Objectives of this study were to determine secular trends of diabetes prevalence in China and develop simple risk assessment algorithms for screening individuals with high-risk for diabetes or with undiagnosed diabetes in Chinese and Indian adults. Two consecutive population based surveys in Chinese and a prospective study in Mauritian Indians were involved in this study. The Chinese surveys were conducted in randomly selected populations aged 20-74 years in 2001-2002 (n=14 592) and 35-74 years in 2006 (n=4416). A two-step screening strategy using fasting capillary plasma glucose (FCG) as first-line screening test followed by standard 2-hour 75g oral glucose tolerance tests (OGTTs) was applied to 12 436 individuals in 2001, while OGTTs were administrated to all participants together with FCG in 2006 and to 2156 subjects in 2002. In Mauritius, two consecutive population based surveys were conducted in Mauritian Indians aged 20-65 years in 1987 and 1992; 3094 Indians (1141 men), who were not diagnosed as diabetes at baseline, were reexamined with OGTTs in 1992 and/or 1998. Diabetes and pre-diabetes was defined following 2006 World Health Organization/ International Diabetes Federation Criteria. Age-standardized, as well as age- and sex-specific, prevalence of diabetes and pre-diabetes in adult Chinese was significantly increased from 12.2% and 15.4% in 2001 to 16.0% and 21.2% in 2006, respectively. A simple Chinese diabetes risk score was developed based on the data of Chinese survey 2001-2002 and validated in the population of survey 2006. The risk scores based on β coefficients derived from the final Logistic regression model ranged from 3 – 32. When the score was applied to the population of survey 2006, the area under operating characteristic curve (AUC) of the score for screening undiagnosed diabetes was 0.67 (95% CI, 0.65-0.70), which was lower than the AUC of FCG (0.76 [0.74-0.79]), but similar to that of HbA1c (0.68 [0.65-0.71]). At a cut-off point of 14, the sensitivity and specificity of the risk score in screening undiagnosed diabetes was 0.84 (0.81-0.88) and 0.40 (0.38-0.41). In Mauritian Indian, body mass index (BMI), waist girth, family history of diabetes (FH), and glucose was confirmed to be independent risk predictors for developing diabetes. Predicted probabilities for developing diabetes derived from a simple Cox regression model fitted with sex, FH, BMI and waist girth ranged from 0.05 to 0.64 in men and 0.03 to 0.49 in women. To predict the onset of diabetes, the AUC of the predicted probabilities was 0.62 (95% CI, 0.56-0.68) in men and 0.64(0.59-0.69) in women. At a cut-off point of 0.12, the sensitivity and specificity was 0.72(0.71-0.74) and 0.47(0.45-0.49) in men; and 0.77(0.75-0.78) and 0.50(0.48-0.52) in women, respectively. In conclusion, there was a rapid increase in prevalence of diabetes in Chinese adults from 2001 to 2006. The simple risk assessment algorithms based on age, obesity and family history of diabetes showed a moderate discrimination of diabetes from non-diabetes, which may be used as first line screening tool for diabetes and pre-diabetes, and for health promotion purpose in Chinese and Indians.
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.