8 resultados para ASYMPTOTIC BETHE-ANSATZ

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a Hamiltonian describing a pendulum coupled with several anisochronous oscillators, giving a simple construction of unstable KAM tori and their stable and unstable manifolds for analytic perturbations. When the coupling takes place through an even trigonometric polynomial in the angle variables, we extend analytically the solutions of the equations of motion, order by order in the perturbation parameter, to a large neighbourhood of the real line representing time. Subsequently, we devise an asymptotic expansion for the splitting (matrix) associated with a homoclinic point. This expansion consists of contributions that are manifestly exponentially small in the limit of vanishing gravity, by a shift-of-countour argument. Hence, we infer a similar upper bound for the splitting itself. In particular, the derivation of the result does not call for a tree expansion with explicit cancellation mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimum Description Length (MDL) is an information-theoretic principle that can be used for model selection and other statistical inference tasks. There are various ways to use the principle in practice. One theoretically valid way is to use the normalized maximum likelihood (NML) criterion. Due to computational difficulties, this approach has not been used very often. This thesis presents efficient floating-point algorithms that make it possible to compute the NML for multinomial, Naive Bayes and Bayesian forest models. None of the presented algorithms rely on asymptotic analysis and with the first two model classes we also discuss how to compute exact rational number solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When ordinary nuclear matter is heated to a high temperature of ~ 10^12 K, it undergoes a deconfinement transition to a new phase, strongly interacting quark-gluon plasma. While the color charged fundamental constituents of the nuclei, the quarks and gluons, are at low temperatures permanently confined inside color neutral hadrons, in the plasma the color degrees of freedom become dominant over nuclear, rather than merely nucleonic, volumes. Quantum Chromodynamics (QCD) is the accepted theory of the strong interactions, and confines quarks and gluons inside hadrons. The theory was formulated in early seventies, but deriving first principles predictions from it still remains a challenge, and novel methods of studying it are needed. One such method is dimensional reduction, in which the high temperature dynamics of static observables of the full four-dimensional theory are described using a simpler three-dimensional effective theory, having only the static modes of the various fields as its degrees of freedom. A perturbatively constructed effective theory is known to provide a good description of the plasma at high temperatures, where asymptotic freedom makes the gauge coupling small. In addition to this, numerical lattice simulations have, however, shown that the perturbatively constructed theory gives a surprisingly good description of the plasma all the way down to temperatures a few times the transition temperature. Near the critical temperature, the effective theory, however, ceases to give a valid description of the physics, since it fails to respect the approximate center symmetry of the full theory. The symmetry plays a key role in the dynamics near the phase transition, and thus one expects that the regime of validity of the dimensionally reduced theories can be significantly extended towards the deconfinement transition by incorporating the center symmetry in them. In the introductory part of the thesis, the status of dimensionally reduced effective theories of high temperature QCD is reviewed, placing emphasis on the phase structure of the theories. In the first research paper included in the thesis, the non-perturbative input required in computing the g^6 term in the weak coupling expansion of the pressure of QCD is computed in the effective theory framework at an arbitrary number of colors. The two last papers on the other hand focus on the construction of the center-symmetric effective theories, and subsequently the first non-perturbative studies of these theories are presented. Non-perturbative lattice simulations of a center-symmetric effective theory for SU(2) Yang-Mills theory show --- in sharp contrast to the perturbative setup --- that the effective theory accommodates a phase transition in the correct universality class of the full theory. This transition is seen to take place at a value of the effective theory coupling constant that is consistent with the full theory coupling at the critical temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topics in Spatial Econometrics — With Applications to House Prices Spatial effects in data occur when geographical closeness of observations influences the relation between the observations. When two points on a map are close to each other, the observed values on a variable at those points tend to be similar. The further away the two points are from each other, the less similar the observed values tend to be. Recent technical developments, geographical information systems (GIS) and global positioning systems (GPS) have brought about a renewed interest in spatial matters. For instance, it is possible to observe the exact location of an observation and combine it with other characteristics. Spatial econometrics integrates spatial aspects into econometric models and analysis. The thesis concentrates mainly on methodological issues, but the findings are illustrated by empirical studies on house price data. The thesis consists of an introductory chapter and four essays. The introductory chapter presents an overview of topics and problems in spatial econometrics. It discusses spatial effects, spatial weights matrices, especially k-nearest neighbours weights matrices, and various spatial econometric models, as well as estimation methods and inference. Further, the problem of omitted variables, a few computational and empirical aspects, the bootstrap procedure and the spatial J-test are presented. In addition, a discussion on hedonic house price models is included. In the first essay a comparison is made between spatial econometrics and time series analysis. By restricting the attention to unilateral spatial autoregressive processes, it is shown that a unilateral spatial autoregression, which enjoys similar properties as an autoregression with time series, can be defined. By an empirical study on house price data the second essay shows that it is possible to form coordinate-based, spatially autoregressive variables, which are at least to some extent able to replace the spatial structure in a spatial econometric model. In the third essay a strategy for specifying a k-nearest neighbours weights matrix by applying the spatial J-test is suggested, studied and demonstrated. In the final fourth essay the properties of the asymptotic spatial J-test are further examined. A simulation study shows that the spatial J-test can be used for distinguishing between general spatial models with different k-nearest neighbours weights matrices. A bootstrap spatial J-test is suggested to correct the size of the asymptotic test in small samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The likelihood ratio test of cointegration rank is the most widely used test for cointegration. Many studies have shown that its finite sample distribution is not well approximated by the limiting distribution. The article introduces and evaluates by Monte Carlo simulation experiments bootstrap and fast double bootstrap (FDB) algorithms for the likelihood ratio test. It finds that the performance of the bootstrap test is very good. The more sophisticated FDB produces a further improvement in cases where the performance of the asymptotic test is very unsatisfactory and the ordinary bootstrap does not work as well as it might. Furthermore, the Monte Carlo simulations provide a number of guidelines on when the bootstrap and FDB tests can be expected to work well. Finally, the tests are applied to US interest rates and international stock prices series. It is found that the asymptotic test tends to overestimate the cointegration rank, while the bootstrap and FDB tests choose the correct cointegration rank.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bootstrap likelihood ratio tests of cointegration rank are commonly used because they tend to have rejection probabilities that are closer to the nominal level than the rejection probabilities of the correspond- ing asymptotic tests. The e¤ect of bootstrapping the test on its power is largely unknown. We show that a new computationally inexpensive procedure can be applied to the estimation of the power function of the bootstrap test of cointegration rank. The bootstrap test is found to have a power function close to that of the level-adjusted asymp- totic test. The bootstrap test estimates the level-adjusted power of the asymptotic test highly accurately. The bootstrap test may have low power to reject the null hypothesis of cointegration rank zero, or underestimate the cointegration rank. An empirical application to Euribor interest rates is provided as an illustration of the findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many economic events involve initial observations that substantially deviate from long-run steady state. Initial conditions of this type have been found to impact diversely on the power of univariate unit root tests, whereas the impact on multivariate tests is largely unknown. This paper investigates the impact of the initial condition on tests for cointegration rank. We compare the local power of the widely used likelihood ratio (LR) test with the local power of a test based on the eigenvalues of the companion matrix. We find that the power of the LR test is increasing in the magnitude of the initial condition, whereas the power of the other test is decreasing. The behaviour of the tests is investigated in an application to price convergence.