16 resultados para "Selective Capture Of Transcribed Sequences (SCOTS)"

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lignin is a complex plant polymer synthesized through co-operation of multiple intracellular and extracellular enzymes. It is deposited to plant cell walls in cells where additional strength or stiffness are needed, such as in tracheary elements (TEs) in xylem, supporting sclerenchymal tissues and at the sites of wounding. Class III peroxidases (POXs) are secreted plant oxidoreductases with implications in many physiological processes such as the polymerization of lignin and suberin and auxin catabolism. POXs are able to oxidize various substrates in the presence of hydrogen peroxide, including lignin monomers, monolignols, thus enabling the monolignol polymerization to lignin by radical coupling. Trees produce large amounts of lignin in secondary xylem of stems, branches and roots. In this study, POXs of gymnosperm and angiosperm trees were studied in order to find POXs which are able to participate in lignin polymerization in developing secondary xylem i.e. are located at the site of lignin synthesis in tree stems and have the ability to oxidize monolignol substrates. Both in the gymnosperm species, Norway spruce and Scots pine, and in the angiosperm species silver birch the monolignol oxidizing POX activities originating from multiple POX isoforms were present in lignifying secondary xylem in stems during the period of annual growth. Most of the partially purified POXs from Norway spruce and silver birch xylem had highest oxidation rate with coniferyl alcohol, the main monomer in guaiacyl-lignin in conifers. The only exception was the most anionic POX fraction from silver birch, which clearly preferred sinapyl alcohol, the lignin monomer needed in the synthesis of syringyl-guaiacyl lignin in angiosperm trees. Three full-length pox cDNAs px1, px2 and px3 were cloned from the developing xylem of Norway spruce. It was shown that px1 and px2 are expressed in developing tracheids in spruce seedlings, whereas px3 transcripts were not detected suggesting low transcription level in young trees. The amino acid sequences of PX1, PX2 and PX3 were less than 60% identical to each other but showed up to 84% identity to other known POXs. They all begin with predicted N-terminal secretion signal (SS) peptides. PX2 and PX3 contained additional putative vacuolar localization determinants (VSDs) at C-terminus. Transient expression of EGFP-fusions of the SS- and VSD-peptides in tobacco protoplasts showed SS-peptides directed EGFP to secretion in tobacco cells, whereas only the PX2 C-terminal peptide seems to be a functional VSD. According to heterologous expression of px1 in Catharanthus roseus hairy roots, PX1 is a guaicol-oxidizing POX with isoelectric point (pI) approximately 10, similar to monolignol oxidizing POXs in protein extracts from Norway spruce lignifying xylem. Hence, PX1 has characteristics for participation to monolignol dehydrogenation in lignin synthesis, whereas the other two spruce POXs seem to have some other functions. Interesting topics in future include functional characterization of syringyl compound oxidizing POXs and components of POX activity regulation in trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study analyses the traffic of Hsp150 fusion proteins through the endoplasmic reticulum (ER) of yeast cells, from their post-translational translocation and folding to their exit from the ER via a selective COPI-independent pathway. The reporter proteins used in the present work are: Hsp150p, an O-glycosylated natural secretory protein of Saccharomyces cerevisiae, as well as fusion proteins consisting of a fragment of Hsp150 that facilitates in the yeast ER proper folding of heterologous proteins fused to it. It is thought that newly synthesized polypeptides are kept in an unfolded form by cytosolic chaperones to facilitate the post-translational translocation across the ER membrane. However, beta-lactamase, fused to the Hsp150 fragment, folds in the cytosol into bioactive conformation. Irreversible binding of benzylpenicillin locked beta-lactamase into a globular conformation, and prevented the translocation of the fusion protein. This indicates that under normal conditions the beta-lactamase portion unfolds for translocation. Cytosolic machinery must be responsible for the unfolding. The unfolding is a prerequisite for translocation through the Sec61 channel into the lumen of the ER, where the polypeptide is again folded into a bioactive and secretion-competent conformation. Lhs1p is a member of the Hsp70 family, which functions in the conformational repair of misfolded proteins in the yeast ER. It contains Hsp70 motifs, thus it has been thought to be an ATPase, like other Hsp70 members. In order to understand its activity, authentic Lhs1p and its recombinant forms expressed in E. coli, were purified. However, no ATPase activity of Lhs1p could be detected. Nor could physical interaction between Lhs1p and activators of the ER Hsp70 chaperone Kar2p, such as the J-domain proteins Sec63p, Scj1p, and Jem1p and the nucleotide exchange factor Sil1p, be demonstrated. The domain structure of Lhs1p was modelled, and found to consist of an ATPase-like domain, a domain resembling the peptide-binding domain (PBD) of Hsp70 proteins, and a C-terminal extension. Crosslinking experiments showed that Lhs1p and Kar2p interact. The interacting domains were the C-terminal extension of Lhs1p and the ATPase domain of Kar2p, and this interaction was independent of ATPase activity of Kar2p. A model is presented where the C-terminal part of Lhs1p forms a Bag-like 3 helices bundle that might serve in the nucleotide exchange function for Kar2p in translocation and folding of secretory proteins in the ER. Exit of secretory proteins in COPII-coated vesicles is believed to be dependent of retrograde transport from the Golgi to the ER in COPI-coated vesicles. It is thought that receptors escaping to the Golgi must be recycled back to the ER exit sites to recruit cargo proteins. We found that Hsp150 leaves the ER even in the absence of functional COPI-traffic from the Golgi to the ER. Thus, an alternative, COPI-independent ER exit pathway must exists, and Hsp150 is recruited to this route. The region containing the signature guiding Hsp150 to this alternative pathway was mapped.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis was to unravel the functional-structural characteristics of root systems of Betula pendula Roth., Picea abies (L.) Karst., and Pinus sylvestris L. in mixed boreal forest stands differing in their developmental stage and site fertility. The root systems of these species had similar structural regularities: horizontally-oriented shallow roots defined the horizontal area of influence, and within this area, each species placed fine roots in the uppermost soil layers, while sinker roots defined the maximum rooting depth. Large radial spread and high ramification of coarse roots, and the high specific root length (SRL) and root length density (RLD) of fine roots indicated the high belowground competitiveness and root plasticity of B. pendula. Smaller radial root spread and sparser branching of coarse roots, and low SRL and RLD of fine roots of the conifers could indicate their more conservative resource use and high association with and dependence on ectomycorrhiza-forming fungi. The vertical fine root distributions of the species were mostly overlapping, implying the possibility for intense belowground competition for nutrients. In each species, conduits tapered and their frequency increased from distal roots to the stem, from the stem to the branches, and to leaf petioles in B. pendula. Conduit tapering was organ-specific in each species violating the assumptions of the general vascular scaling model (WBE). This reflects the hierarchical organization of a tree and differences between organs in the relative importance of transport, safety, and mechanical demands. The applied root model was capable of depicting the mass, length and spread of coarse roots of B. pendula and P. abies, and to the lesser extent in P. sylvestris. The roots did not follow self-similar fractal branching, because the parameter values varied within the root systems. Model parameters indicate differences in rooting behavior, and therefore different ecophysiological adaptations between species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White-rot fungi are wood degrading organisms that are able to decompose all wood polymers; lignin, cellulose and hemicellulose. Especially the selective white-rot fungi that decompose preferentially wood lignin are promising for biopulping applications. In biopulping the pretreatment of wood chips with white-rot fungi enhances the subsequent pulping step and substantially reduces the refining energy consumption in mechanical pulping. Because it is not possible to carry out biopulping in industrial scale as a closed process it has been necessary to search for new selective strains of white-rot fungi which naturally occur in Finland and cause selective white-rot of Finnish wood raw-material. In a screening of 300 fungal strains a rare polypore, Physisporinus rivulosus strain T241i isolated from a forest burn research site, was found to be a selective lignin degrader and promising for the use in biopulping. Since selective lignin degradation is apparently essential for biopulping, knowledge on lignin-modifying enzymes and the regulation of their production by a biopulping fungus is needed. White-rot fungal enzymes that participate in lignin degradation are laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP) and hydrogen peroxide forming enzymes. In this study, P. rivulosus was observed to produce MnP, laccase and oxalic acid during growth on wood chips. In liquid cultures manganese and veratryl alcohol increased the production of acidic MnP isoforms detected also in wood chip cultures. Laccase production by P. rivulosus was low unless the cultures were supplemented with sawdust and charred wood, the components of natural growth environment of the fungus. In white-rot fungi the lignin-modifying enzymes are typically present as multiple isoforms. In this study, two MnP encoding genes, mnpA and mnpB, were cloned and characterized from P. rivulosus T241i. Analysis of the N-terminal amino acid sequences of two purified MnPs and putative amino acid sequence of the two cloned mnp genes suggested that P. rivulosus possesses at least four mnp genes. The genes mnpA and mnpB markedly differ from each other by the gene length, sequence and intron-exon structure. In addition, their expression is differentially affected by the addition of manganese and veratryl alcohol. P. rivulosus produced laccase as at least two isoforms. The results of this study revealed that the production of MnP and laccase was differentially regulated in P. rivulosus, which ensures the efficient lignin degradation under a variety of environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The androgen receptor (AR) mediates the effects of the male sex-steroid hormones (androgens), testosterone and 5?-dihydrotestosterone. Androgens are critical in the development and maintenance of male sexual characteristics. AR is a member of the steroid receptor ligand-inducible transcription factor family. The steroid receptor family is a subgroup of the nuclear receptor superfamily that also includes receptors for the active forms of vitamin A, vitamin D3, and thyroid hormones. Like all nuclear receptors, AR has a conserved modular structure consisting of a non-conserved amino-terminal domain (NTD), containing the intrinsic activation function 1, a highly conserved DNA-binding domain, and a conserved ligand-binding domain (LBD) that harbors the activation function 2. Each of these domains plays an important role in receptor function and signaling, either via intra- and inter-receptor interactions, interactions with specific DNA sequences, termed hormone response elements, or via functional interactions with domain-specific proteins, termed coregulators (coactivators and corepressors). Upon binding androgens, AR acquires a new conformational state, translocates to the nucleus, binds to androgen response elements, homodimerizes and recruits sequence-specific coregulatory factors and the basal transcription machinery. This set of events is required to activate gene transcription (expression). Gene transcription is a strictly modulated process that governs cell growth, cell homeostasis, cell function and cell death. Disruptions of AR transcriptional activity caused by receptor mutations and/or altered coregulator interactions are linked to a wide spectrum of androgen insensitivity syndromes, and to the pathogenesis of prostate cancer (CaP). The treatment of CaP usually involves androgen depletion therapy (ADT). ADT achieves significant clinical responses during the early stages of the disease. However, under the selective pressure of androgen withdrawal, androgen-dependent CaP can progress to an androgen-independent CaP. Androgen-independent CaP is invariably a more aggressive and untreatable form of the disease. Advancing our understanding of the molecular mechanisms behind the switch in androgen-dependency would improve our success of treating CaP and other AR related illnesses. This study evaluates how clinically identified AR mutations affect the receptor s transcriptional activity. We reveal that a potential molecular abnormality in androgen insensitivity syndrome and CaP patients is caused by disruptions of the important intra-receptor NTD/LBD interaction. We demonstrate that the same AR LBD mutations can also disrupt the recruitment of the p160 coactivator protein GRIP1. Our investigations reveal that 30% of patients with advanced, untreated local CaP have somatic mutations that may lead to increases in AR activity. We report that somatic mutations that activate AR may lead to early relapse in ADT. Our results demonstrate that the types of ADT a CaP patient receives may cause a clustering of mutations to a particular region of the receptor. Furthermore, the mutations that arise before and during ADT do not always result in a receptor that is more active, indicating that coregulator interactions play a pivotal role in the progression of androgen-independent CaP. To improve CaP therapy, it is necessary to identify critical coregulators of AR. We screened a HeLa cell cDNA library and identified small carboxyl-terminal domain phosphatase 2 (SCP2). SCP2 is a protein phosphatase that directly interacts with the AR NTD and represses AR activity. We demonstrated that reducing the endogenous cellular levels of SCP2 causes more AR to load on to the prostate specific antigen (PSA) gene promoter and enhancer regions. Additionally, under the same conditions, more RNA polymerase II was recruited to the PSA promoter region and overall there was an increase in androgen-dependent transcription of the PSA gene, revealing that SCP2 could play a role in the pathogenesis of CaP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizoctonia solani is a soil inhabiting basidiomycetous fungus able to induce a wide range of symptoms in many plant species. This genetically complex species is divided to 13 anastomosis groups (AG), of which AG-3 is specialized to infect potato. However, also a few other AGs are able to infect or live in close contact with potato. On potato, R. solani infection causes two main types of diseases including stem canker observed as a dark brown lesions on developing stems and stolons, and black scurf that develops on new tubers close to the time of harvest. These disease symptoms are collectively called a ‘Rhizoctonia disease complex’. Between the growing seasons R. solani survives in soil and plant debri as sclerotia or as the sclerotia called black scurf on potato tubers which when used as seed offer the main route for dispersal of the fungus to new areas. The reasons for the dominance of AG-3 on potato seem to be attributable to its highly specialization to potato and its ability to infect and form sclerotia efficiently at low temperatures. In this study, a large nationwide survey of R. solani isolates was made in potato crops in Finland. Almost all characterized isolates belonged to AG-3. Additionally, three other AGs (AG-2-1, AG-4 and AG-5) were found associated with symptoms on potato plants but they were weaker pathogens on potato than AG-3 as less prone to form black scurf. According to phylogenetic analysis of the internal transcribed sequences (ITS) of the ribosomal RNA genes the Finnish AG-3 isolates are closely related to each other even though a wide variation of physiological features was observed between them. Detailed analysis of the ITS regions revealed single nucleotide polymorphism in 14 nucleotide positions of ITS-1 and ITS-2. Additionally, compensatory base changes on ITS-2 were detected which suggests that potato-infecting R. solani AG-3 could be considered as a separate species instead of an AG of R. solani. For the first time, molecular defence responses were studied and detected during the early phases of interaction between R. solani AG-3 and potato. Extensive systemic signalling for defence exploiting several known defence pathways was activated as soon as R. solani came into close contact with the base of a sprout. The defence response was strong enough to protect vulnerable sprout tips from new attacks by the pathogen. These results at least partly explain why potato emergence is eventually successful even under heavy infection pressure by R. solani.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Archaea were long thought to be a group of ancient bacteria, which mainly lived in extreme environments. Due to the development of DNA sequencing methods and molecular phylogenetic analyses, it was shown that the living organisms are in fact divided into three domains; the Archaea, Bacteria and the Eucarya. Since the beginning of the previous decade, it was shown that archaea generally inhabit moderate environments and that these non-extremophilic archaea are more ubiquitous than the extremophiles. Group 1 of non-extreme archaea affiliate with the phylum Crenarchaeota. The most commonly found soil archaea belong to the subgroup 1.1b. However, the Crenarchaeota found in the Fennoscandian boreal forest soil belong to the subgroup 1.1c. The organic top layer of the boreal forest soil, the humus, is dominated by ectomycorrhizal fungal hyphae. These colonise virtually all tree fine root tips in the humus layer and have been shown to harbour distinct bacterial populations different from those in the humus. The archaea have also been shown to colonise both boreal forest humus and the rhizospheres of plants. In this work, studies on the archaeal communities in the ectomycorrhizospheres of boreal forest trees were conducted in microcosms. Archaea belonging to the group 1.1c Crenarchaeota and Euryarchaeota of the genera Halobacterium and Methanolobus were detected. The archaea generally colonised fungal habitats, such as ectomycorrhizas and external mycelia, rather than the non-mycorrhizal fine roots of trees. The species of ectomycorrhizal fungus had a great impact on the archaeal community composition. A stable euryarchaeotal community was detected especially in the mycorrhizas, of most of the tested Scots pine colonising ectomycorrhizal fungi. The Crenarchaeota appeared more sporadically in these habitats, but had a greater diversity than the Euryarchaeota. P. involutus mycorrhizas had a higher diversity of 1.1c Crenarchaeota than the other ectomycorrhizal fungi. The detection level of archaea in the roots of boreal trees was generally low although archaea have been shown to associate with roots of different plants. However, alder showed a high diversity of 1.1c Crenarchaeota, exceeding that of any of the tested mycorrhizas. The archaeal 16S rRNA genes detected from the non-mycorrhizal roots were different from those of the P. involutus mycorrhizas. In the phylogenetic analyses, the archaeal 16S rRNA gene sequences obtained from non-mycorrhizal fine roots fell in a separate cluster within the group 1.1c Crenarchaeota than those from the mycorrhizas. When the roots of the differrent tree species were colonised by P. involutus, the diversity and frequency of the archaeal populations of the different tree species were more similar to each other. Both Cren- and Euryarchaeota were enriched in cultures to which C-1 substrates were added. The 1.1c Crenarchaeota grew anaerobically in mineral medium with CH4 and CO2 as the only available C sources, and in yeast extract media with CO2 and CH4 or H2. The crenarchaeotal diversity was higher in aerobic cultures on mineral medium with CH4 or CH3OH than in the anaerobic cultures. Ecological functions of the mycorrhizal 1.1c Crenarchaeota in both anaerobic and aerobic cycling of C-1 compounds were indicated. The phylogenetic analyses did not divide the detected Crenarchaeota into anaerobic and aerobic groups. This may suggest that the mycorrhizospheric crenarchaeotal communities consist of closely related groups of anaerobic and aerobic 1.1c Crenarchaeota, or the 1.1c Crenarchaeota may be facultatively anaerobic. Halobacteria were enriched in non-saline anaerobic yeast extract medium cultures in which CH4 was either added or produced, but were not detected in the aerobic cultures. They may potentially be involved in anaerobic CH4 cycling in ectomycorrhizas. The CH4 production of the mycorrhizal samples was over 10 times higher than for humus devoid of mycorrhizal hyphae, indicating a high CH4 production potential of the mycorrhizal metanogenic community. Autofluorescent methanogenic archaea were detected by microscopy and 16S rRNA gene sequences of the genus Methanolobus were obtained. The archaeal community depended on both tree species and the type of ectomycorrhizal fungus colonising the roots and the Cren- and Euryarchaeota may have different ecological functions in the different parts of the boreal forest tree rhizosphere and mycorrhizosphere. By employing the results of this study, it may be possible to isolate both 1.1c Crenarchaeota as well as non-halophilic halobacteria and aerotolerant methanogens from mycorrhizospheres. These archaea may be used as indicators for change in the boreal forest soil ecosystem due to different factors, such as exploitations of forests and the rise in global temperature. More information about the microbial populations with apparently low cell numbers but significant ecological impacts, such as the boreal forest soil methanogens, may be of crucial importance to counteract human impacts on such globally important ecosystems as the boreal forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accompanying collective research report is the result of the research project in 1986­90 between The Finnish Academy and the former Soviet Academy of Sciences. The project was organized around common field work in Finland and in the former Soviet Union and theoretical analyses of tree growth determining processes. Based on theoretical analyses, dynamic stand growth models were made and their parameters were determined utilizing the field results. Annual cycle affects the tree growth. Our theoretical approach was based on adaptation to local climate conditions from Lapland to South Russia. The initiation of growth was described as a simple low and high temperature accumulation driven model. Linking the theoretical model with long term temperature data allowed us to analyze what type of temperature response produced favorable outcome in different climates. Initiation of growth consumes the carbohydrate reserves in plants. We measured the dynamics of insoluble and soluble sugars in the very northern and Karelian conditions. Clear cyclical pattern was observed but the differences between locations were surprisingly small. Analysis of field measurements of CO2 exchange showed that irradiance is the dominating factor causing variation in photosynthetic rate in natural conditions during summer. The effect of other factors is so small that they can be omitted without any considerable loss of accuracy. A special experiment carried out in Hyytiälä showed that the needle living space, defined as the ratio between the shoot cylindric volume and needle surface area, correlates with the shoot photosynthesis. The penetration of irradiance into Scots pine canopy is a complicated phenomenon because of the movement of the sun on the sky and the complicated structure of branches and needles. A moderately simple but balanced forest radiation regime submodel was constructed. It consists of the tree crown and forest structure, the gap probability calculation and the consideration of spatial and temporal variation of radiation inside the forest. The common field excursions in different geographical regions resulted in a lot of experimental data of regularities of woody structures. The water transport seems to be a good common factor to analyse these properties of tree structure. There are evident regressions between cross-sectional areas measured at different locations along the water pathway from fine roots to needles. The observed regressions have clear geographical trends. For example, the same cross-sectional area can support three times higher needle mass in South Russia than in Lapland. Geographical trends can also be seen in shoot and needle structure. Analysis of data published by several Russian authors show, that one ton of needles transpire 42 ton of water a year. This annual amount of transpiration seems to be independent of geographical location, year and site conditions. The produced theoretical and experimental material is utilised in the development of stand growth model that describes the growth and development of Scots pine stands in Finland and the former Soviet Union. The core of the model is carbon and nutrient balances. This means that carbon obtained in photosynthesis is consumed for growth and maintenance and nutrients are taken according to the metabolic needs. The annual photosynthetic production by trees in the stand is determined as a function of irradiance and shading during the active period. The utilisation of the annual photosynthetic production to the growth of different components of trees is based on structural regularities. Since the fundamental metabolic processes are the same in all locations the same growth model structure can be applied in the large range of Scots pine. The annual photosynthetic production and structural regularities determining the allocation of resources have geographical features. The common field measurements enable the application of the model to the analysis of growth and development of stands growing on the five locations of experiments. The model enables the analysis of geographical differences in the growth of Scots pine. For example, the annual photosynthetic production of a 100-year-old stand at Voronez is 3.5 times higher than in Lapland. The share consumed to needle growth (30 %) and to growth of branches (5 %) seems to be the same in all locations. In contrast, the share of fine roots is decreasing when moving from north to south. It is 20 % in Lapland, 15 % in Hyytiälä Central Finland and Kentjärvi Karelia and 15 % in Voronez South Russia. The stem masses (115­113 ton/ha) are rather similar in Hyytiälä, Kentjärvi and Voronez, but rather low (50 ton/ha) in Lapland. In Voronez the height of the trees reach 29 m being in Hyytiälä and Kentjärvi 22 m and in Lapland only 14 m. The present approach enables utilization of structural and functional knowledge, gained in places of intensive research, in the analysis of growth and development of any stand. This opens new possibilities for growth research and also for applications in forestry practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on carbon uptake in boreal forests has mainly focused on mature trees, even though ground vegetation species are effective assimilators and can substantially contribute to the CO2 uptake of forests. Here, I examine the photosynthesis of the most common species of ground vegetation in a series of differently aged Scots pine stands, and at two clear-cut sites with substantial differences in fertility. In general, the biomass of evergreen species was highest at poor sites and below canopies, whereas grasses and herbs predominated at fertile sites and open areas. Unlike mosses, the measured vascular species showed clear annual cycles in their photosynthetic activity, which increased earlier and decreased later in evergreen vascular species than in deciduous species. However, intraspecific variation and self-shading create differences in the overall level of photosynthesis. Light, temperature history, soil moisture and recent possible frosts could explain the changes in photosynthesis of low shrubs and partially also some changes in deciduous species. Light and the occurrence of rain events explained most of the variation in the photosynthesis of mosses. The photosynthetic production of ground vegetation was first upscaled, using species-specific and mass-based photosynthetic activities and average biomass of the site, and then integrated over the growing season, using changes in environmental factors. Leaf mass-based photosynthesis was highest in deciduous species, resulting in notably higher photosynthetic production at fertile sites than at poor clear-cut sites. The photosynthetic production decreased with stand age, because flora changed towards evergreen species, and light levels diminished below the canopy. In addition, the leaf mass-based photosynthetic activity of some low shrubs declined with the age of the surrounding trees. Different measuring methods led to different momentary rate of photosynthesis. Therefore, the choice of measuring method needs special attention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite progress in conventional cancer treatment regimes, metastatic disease essentially remains incurable and new treatment alternatives are needed. Virotherapy is a relatively novel approach in cancer treatment. It harnesses the natural ability of oncolytic viruses to kill the cells they proliferate in and to spread to neighboring cells, thereby amplifying the therapeutic effect of the initial input dose. The use of replicating, oncolytic viruses for cancer treatment necessitates introduction of various genetic modifications to the viral genome, thereby restraining replication exclusively to tumor cells and eventually obtaining selective eradication of the tumor without side effects to healthy tissue. Furthermore, various modifications can be applied to the viral capsid in hope of gaining effective transduction of target tissue. In other words, the entry of viruses into tumor tissue can be augmented by allowing the virus to utilize non-native receptors for entry. Genetic capsid modifications may also help to avoid some major hurdles in systemic delivery that ultimately lead to the rapid clearance of the virus from the blood and virus induced toxicity. In addition to genetic modifications that alter the phenotype of the virus, some pharmacologic agents may be utilized to enhance the virus entry to target site. Liver kupffer cells (KC) are responsible for the majority of viral clearance after systemic viral delivery and they play a major role in adenovirus induced acute toxicity. The therapeutic window could possibly be widened by transiently depleting KCs, allowing smaller viral input doses and diminishing KC related toxicity. The transductional efficacy of various capsid modified viruses was analyzed in vitro and in vivo in murine orthotopic breast cancer model. The effect of capsid modifications on the oncolytic efficacy, i.e. the ability of the viruses to kill cancer cells, was evaluated in vitro and in vivo in murine cancer models. We concluded that capsid modifications result in transductional enhancement, and that enhanced transduction translates into more potent oncolysis in vitro and in vivo. When KC depleting agents were used in vivo prior to viral injections, enhanced tumor transduction was seen, but this effect was not translated into enhanced antitumor activity. Transcriptional regulation of replicative oncolytic viruses is a prerequisite for virotherapy. Tumor or tissue specific promoters can be used to control the transcription of adenoviral early genes to gain cancer specific viral replication. Specific deletions in viral regions essential for virus replication in normal cells can further increase the safety by allowing viral genome replication in cancer cells featuring specific mutations. Genetically modified viruses were shown to be able to kill putative cancer stem cells that are thought to be responsible for post treatment relapses and metastasis. Further, pharmacologic intervention reduced viral replication and thereby might offer an additional safety switch in case viral replication related side effects are encountered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyamines are organic polycations that participate in various physiological functions, including cell proliferation, differentiation and apoptosis. Cellular polyamines originate from endogenous biosynthesis and exogenous sources. Their subcellular pool is under strict control, achieved by regulating their uptake and metabolism. Polyamine-induced proteins called antizymes (AZ) act as key regulators of intracellular polyamine concentration. They regulate both the transport of polyamines and the activity and degradation of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. AZs themselves are negatively regulated by antizyme inhibitor (AZIN). AZIN functions as a positive regulator of cellular polyamine homeostasis, which by binding to AZs reactivates ODC and induces the uptake of polyamines. In various pathological conditions, including cancer, polyamine levels are misregulated. Polyamine homeostasis has therefore become an attractive target for therapeutic interventions and it is thus crucial to characterize the molecular basis underlying the homeostatic regulation. A novel human AZIN-resembling protein was previously identified in our group. The purpose of this study was to elucidate the function and distribution of this protein, termed as an antizyme inhibitor 2 (AZIN2). According to my results, AZIN2 functions as a novel regulator of polyamine homeostasis. It shows no enzymatic activity, but instead it binds AZs and negates their activity, which subsequently leads to reactivation of ODC and inhibition of its degradation. Expression of AZIN2 is restricted to terminally differentiated cells, such as mast cells (MC) and neurosecretory cells. In these actively secreting cell types, AZIN2 localizes to subcellular vesicles or granules where its function is important for the vesicle-mediated secretion. In MCs, AZIN2 localizes to the serotonin-containing subset of MC granules, and its expression is coupled to MC activation. The functional role of polyamines as potential mediators of MC activity was also investigated, and it was observed that the secretion of serotonin is selectively dependent on activation of ODC. In neurosecretory cells, AZIN2-positive vesicles localize mainly to the trans-Golgi network (TGN). Depletion of AZIN2 or cellular polyamines causes selective fragmentation of the TGN and retards secretion of proteins. Since addition of exogenous polyamines reverses these effects, the data indicate that AZIN2 and its downstream effectors, polyamines, are functionally implicated in the regulation of secretory vesicle transport. My studies therefore reveal a novel function for polyamines as modulators of both constitutive and regulated secretion. Based on the results, I propose that the role of AZIN2 is to act as a local in situ activator of polyamine biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first synthesis of long chain 5-n-alkylresorcinols (C15-C25) in whole grains and whole grain products by a novel modification of Wittig reaction is described. 5-n-Alkylresorcinols are phenolic lipids that have various effects on biological systems, such as antioxidant activity and interaction with biological membranes. These compounds are considered as biomarkers of whole grain intake, which is connected with reduced risk of cardiovascular diseases and certain cancers. Novel hapten derivatives of 5-n-alkylresorcinols, potential compounds for immunoanalytical techniques, are prepared by the same procedure utilizing microwave catalysed aqueous Wittig reaction as the key step. The synthesised analogues are required by various analytical, metabolism and bioactivity investigations. Four alternative strategies for producing deuterium polylabelled 5-n-alkylresorcinols are explored. Ring-labelled D3-alkylresorcinols were synthesized by acidic H/D exchange. Side chain -labelled D4-derivative was prepared by a total synthesis approach utilizing D2 deuterogenation of a D2-alkene derivative, and deuterogenation of alkynes was investigated in another total synthesis approach. An -D3-labelled alkylresorcinol is isotopically pure and completely stable under all relevant conditions encountered during analytical work. The labelling of another phenolic component of whole grains was explored. The preparation of D3-ferulic acid and related compounds by way of selective methylation of the precursors is described. The deuterated compounds are useful as standards in the quantification of these natural products in various substances, such as food and human fluids. The pure 5-n-alkylresorcinol analogues prepared were used in in vitro experiments on alkylresorcinol antioxidant activity and antigenotoxicity. The in vitro experiments show that alkylresorcinols act as antioxidants, especially when incorporated into biological systems, but possess lower activity in chemical tests (FRAP and DPPH assay). Whole grain alkylresorcinols are shown for the first time to have a protective effect against copper induced oxidation of LDL, and H2O2 or genotoxic faecal water induced damage on HT29 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During this study different approaches were studied to obtain isoflavone sulphates, glucuronides and sulphoglucuronides. Three isoflavone disulphates (daidzein-di-O-sulphate, genistein-di-O-sulphate and glycitein-di-O-sulphate) and three isoflavonoid disulphates (dihydrodaidzein-di-O-sulphate, dihydrogenistein-di-O-sulphate and equol-di-O-sulphate) were synthesised in moderate yields by using in situ prepared pyridine sulphur trioxide complex, made from chlorosulphonic acid and pyridine. These disulphated compounds can be used to develop analytical procedures and study the biological activity of disulphated products. As the use of the HPLC-MS methods in the field of isoflavones has increased its popularity, deuterated isoflavone disulphates were synthesised. A new microwave assisted deuteration method, using CF3COOD, was developed for this purpose. Three polydeuterated isoflavone disulphates (daidzein-d6-di-O-sulphate, genistein-d4-di-O-sulphate and glycitein-d6-di-O-sulphate) were obtained in moderate yields with high isotopic purity. A synthetic method was developed for daidzein sulphoglucuronide (daidzein-7-O-b-D-glucuronide-4´-O-sulphate), which is a major metabolite in rat bile. By using protection/deprotection steps, the desired product was finally obtained in moderate yield. The method developed can be used in further studies of synthesis of isoflavonoid mixed conjugates. As a part of this study, the structure of naturally occurring daidzein-4´-O-b-glucoside was verified. Different glycosidation methods are reviewed and possible factors affecting the stereoselectivity are discussed. The study of the selective chlorination of isoflavones was a consequence of the observed unexpected chlorination during the synthesis of isoflavone acid chlorides by thionyl chloride. This fascinating phenomenon was investigated further with various isoflavones and as a result a method for producing isoflavone chlorides (8-chlorogenistein, 6,8-dichlorogenistein and 6,8-dichlorobiochanin A) was developed. Protecting groups played a great role during this study, which led to an intensive study on them. A regioselective protection method was developed by using direct introduction of the protecting group (Benzyl and Benzoyl) to positions 7-O or 4´-O in daidzein, genistein and glycitein with t-BuOK as a base in DMF in moderate yields. The possibility of exploiting the transesterification was also investigated. It was observed that by using K2CO3 as a base in DMF, daidzein, genistein and glycitein could be benzoylated at position 4´-O selectively, in the presence of the more acidic 7 hydroxy group. Transesterification also proved to be useful in the glycosidation of isoflavones at position 7-O, starting from 7-O-benzoylated isoflavones. Different carboxylic acid derivatives were synthesised for use either in the development of radioimmunoassay (7-O-carboxymethylglycitein and 4´-O-carboxymethylglycitein) or synthesis of daunorubicin isoflavone derivative for biological testing (7-O-carboxypropylbiochanin A and 7-O-carboxypropylgenistein).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic cells are characterized by having a subset of internal membrane compartments, each one with a specifi c identity, structure and function. Proteins destined to be targeted to the exterior of the cell need to enter and progress through the secretory pathway. Transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi takes place by the selective packaging of proteins into COPII-coated vesicles at the ER membrane. Taking advantage of the extensive genetic tools available for S. cerevisiae we found that Hsp150, a yeast secretory glycoprotein, selectively exited the ER in the absence of any of the three Sec24p family members. Sec24p has been thought to be an essential component of the COPII coat and thus indispensable for exocytic membrane traffic. Next we analyzed the ability of Hsp150 to be secreted in mutants, where post-Golgi transport is temperature sensitive. We found that Hsp150 could be selectively secreted under conditions where the exocyst component Sec15p is defective. Analysis of the secretory vesicles revealed that Hsp150 was packaged into a subset of known secretory vesicles as well as in a novel pool of secretory vesicles at the level of the Golgi. Secretion of Hsp150 in the absence of Sec15p function was dependent of Mso1p, a protein capable of interacting with vesicles intended to fuse with the plasma membrane, with the SNARE machinery and with Sec1p. This work demonstrated that Hsp150 is capable of using alternative secretory pathways in ER-to-Golgi and Golgi-to-plasma membrane traffi c. The sorting signals, used at both stages of the secretory pathway, for secretion of Hsp150 were different, revealing the highly dynamic nature and spatial organization of the secretory pathway. Foreign proteins usually misfold in the yeast ER. We used Hsp150 as a carrier to assist folding and transport of heterologous proteins though the secretory pathway to the culture medium in both S. cerevisiae and P. pastoris. Using this technique we expressed Hsp150Δ-HRP and developed a staining procedure, which allowed the visualization of the organelles of the secretory pathway of S. cerevisiae.