110 resultados para Museum conservation methods.
Resumo:
Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.
Resumo:
An efficient and statistically robust solution for the identification of asteroids among numerous sets of astrometry is presented. In particular, numerical methods have been developed for the short-term identification of asteroids at discovery, and for the long-term identification of scarcely observed asteroids over apparitions, a task which has been lacking a robust method until now. The methods are based on the solid foundation of statistical orbital inversion properly taking into account the observational uncertainties, which allows for the detection of practically all correct identifications. Through the use of dimensionality-reduction techniques and efficient data structures, the exact methods have a loglinear, that is, O(nlog(n)), computational complexity, where n is the number of included observation sets. The methods developed are thus suitable for future large-scale surveys which anticipate a substantial increase in the astrometric data rate. Due to the discontinuous nature of asteroid astrometry, separate sets of astrometry must be linked to a common asteroid from the very first discovery detections onwards. The reason for the discontinuity in the observed positions is the rotation of the observer with the Earth as well as the motion of the asteroid and the observer about the Sun. Therefore, the aim of identification is to find a set of orbital elements that reproduce the observed positions with residuals similar to the inevitable observational uncertainty. Unless the astrometric observation sets are linked, the corresponding asteroid is eventually lost as the uncertainty of the predicted positions grows too large to allow successful follow-up. Whereas the presented identification theory and the numerical comparison algorithm are generally applicable, that is, also in fields other than astronomy (e.g., in the identification of space debris), the numerical methods developed for asteroid identification can immediately be applied to all objects on heliocentric orbits with negligible effects due to non-gravitational forces in the time frame of the analysis. The methods developed have been successfully applied to various identification problems. Simulations have shown that the methods developed are able to find virtually all correct linkages despite challenges such as numerous scarce observation sets, astrometric uncertainty, numerous objects confined to a limited region on the celestial sphere, long linking intervals, and substantial parallaxes. Tens of previously unknown main-belt asteroids have been identified with the short-term method in a preliminary study to locate asteroids among numerous unidentified sets of single-night astrometry of moving objects, and scarce astrometry obtained nearly simultaneously with Earth-based and space-based telescopes has been successfully linked despite a substantial parallax. Using the long-term method, thousands of realistic 3-linkages typically spanning several apparitions have so far been found among designated observation sets each spanning less than 48 hours.
Resumo:
Wood is an important material for the construction and pulping industries. Using x-ray diffraction the microfibril angle of Sitka spruce wood was studied in the first part of this thesis. Sitka spruce (Picea sitchensis [Bong.] Carr.) is native to the west coast of North America, but due to its fast growth rate, it has also been imported to Europe. So far, its nanometre scale properties have not been systematically characterised. In this thesis the microfibril angle of Sitka spruce was shown to depend significantly on the origin of the tree in the first annual rings near the pith. Wood can be further processed to separate lignin from cellulose and hemicelluloses. Solid cellulose can act as a reducer for metal ions and it is also a porous support for nanoparticles. By chemically reducing nickel or copper in the solid cellulose support it is possible to get small nanoparticles on the surfaces of the cellulose fibres. Cellulose supported metal nanoparticles can potentially be used as environmentally friendly catalysts in organic chemistry reactions. In this thesis the size of the nickel and copper containing nanoparticles were studied using anomalous small-angle x-ray scattering and wide-angle x-ray scattering. The anomalous small-angle x-ray scattering experiments showed that the crystallite size of the copper oxide nanoparticles was the same as the size of the nanoparticles, so the nanoparticles were single crystals. The nickel containing nanoparticles were amorphous, but crystallised upon heating. The size of the nanoparticles was observed to be smaller when the reduction of nickel was done in aqueous ammonium hydrate medium compared to reduction made in aqueous solution. Lignin is typically seen as the side-product of wood industries. Lignin is the second most abundant natural polymer on Earth, and it possesses potential to be a useful material for many purposes in addition to being an energy source for the pulp mills. In this thesis, the morphology of several lignins, which were produced by different separation methods from wood, was studied using small-angle and ultra small-angle x-ray scattering. It was shown that the fractal model previously proposed for the lignin structure does not apply to most of the extracted lignin types. The only lignin to which the fractal model could be applied was kraft lignin. In aqueous solutions the average shape of the low molar mass kraft lignin particles was observed to be elongated and flat. The average shape does not necessarily correspond to the shape of the individual particles because of the polydispersity of the fraction and due to selfassociation of the particles. Lignins, and especially lignosulfonate, have many uses as dispersants, binders and emulsion stabilisers. In this thesis work the selfassociation of low molar mass lignosulfonate macromolecules was observed using small-angle x-ray scattering. By taking into account the polydispersity of the studied lignosulfonate fraction, the shape of the lignosulfonate particles was determined to be flat by fitting an oblate ellipsoidal model to the scattering intensity.
Resumo:
In recent decades, nation-states have become major stakeholders in nonhuman genetic resource networks as a result of several international treaties. The most important of these is the juridically binding international Convention on Biological Diversity (CBD), signed at the Rio Earth Summit in 1992 by some 150 nations. This convention was a watershed for the identification of global rights related to genetic resources in recognising the sovereign power of signatory nations over their natural resources. The contracting parties are legally obliged to identify their native genetic material and to take legislative, administrative, and/or policy measures to foster research on genetic resources. In this process of global bioprospecting in the name of biodiversity conservation, the world's nonhuman genetic material is to be indexed according to nation and nationality. This globally legitimated process of native genetic identification inscribes national identity into nature and flesh. As a consequence, this new form of potential national biowealth forms also what could be called novel nonhuman genetic nationhoods. These national corporealities are produced in tactical and strategic encounters of the political and the scientific, in new spaces crafted through technical and institutional innovation, and between the national reconfiguration of the natural and cultural as framed by international political agreements. This work follows the creation of national genetic resources in one of the biodiversity-poor countries of the North, Finland. The thesis is an ethnographic work addressing the calculation of life: practices of identifying, evaluating, and collecting nonhuman life in national genetic programmes. The core of the thesis is about observations made within the Finnish Genetic Resources Programmes in 2004 2008, gathered via multi-sited ethnography and related methods derived from the anthropology of science. The thesis explores the problematic relations of the communal forms of human and nonhuman life in an increasingly technoscientific contemporaneity the co-production and coexistence of human and nonhuman life in biopolitical formations called nations.
Resumo:
This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.
Resumo:
Increasing antimicrobial resistance in bacteria has led to the need for better understanding of antimicrobial usage patterns. In 1999, the World Organisation for Animal Health (OIE) recommended that an international ad hoc group should be established to address human and animal health risks related to antimicrobial resistance and the contribution of antimicrobial usage in veterinary medicine. In European countries the need for continuous recording of the usage of veterinary antimicrobials as well as for animal species-specific and indication-based data on usage has been acknowledged. Finland has been among the first countries to develop prudent use guidelines in veterinary medicine, as the Ministry of Agriculture and Forestry issued the first animal species-specific indication-based recommendations for antimicrobial use in animals in 1996. These guidelines have been revised in 2003 and 2009. However, surveillance on the species-specific use of antimicrobials in animals has not been performed in Finland. This thesis provides animal species-specific information on indication-based antimicrobial usage. Different methods for data collection have been utilized. Information on antimicrobial usage in animals has been gathered in four studies (studies A-D). Material from studies A, B and C have been used in an overlapping manner in the original publications I-IV. Study A (original publications I & IV) presents a retrospective cross-sectional survey on prescriptions for small animals at the Veterinary Teaching Hospital of the University of Helsinki. Prescriptions for antimicrobial agents (n = 2281) were collected and usage patterns, such as the indication and length of treatment, were reviewed. Most of the prescriptions were for dogs (78%), and primarily for the treatment of skin and ear infections most of which were treated with cephalexin for a median period of 14 days. Prescriptions for cats (18%) were most often for the treatment of urinary tract infections with amoxicillin for a median length of 10 days. Study B (original publication II) was a retrospective cross-sectional survey where prescriptions for animals were collected from 17 University Pharmacies nationwide. Antimicrobial prescriptions (n = 1038) for mainly dogs (65%) and cats (19%) were investigated. In this study, cephalexin and amoxicillin were also the most frequently used drugs for dogs and cats, respectively. In study C (original publications III & IV), the indication-based usage of antimicrobials of practicing veterinarians was analyzed by using a prospective questionnaire. Randomly selected practicing veterinarians in Finland (n = 262) recorded all their antimicrobial usage during a 7-day study period. Cattle (46%) with mastitis were the most common patients receiving antimicrobial treatment, generally intramuscular penicillin G or intramammary treatment with ampicillin and cloxacillin. The median length of treatment was four days, regardless of the route of administration. Antimicrobial use in horses was evaluated in study D, the results of which are previously unpublished. Firstly, data collected with the prospective questionnaire from the practicing veterinarians showed that horses (n = 89) were frequently treated for skin or wound infections by using penicillin G or trimethoprim-sulfadiazine. The mean duration of treatment was five to seven days. Secondly, according to retrospective data collected from patient records, horses (n = 74) that underwent colic surgery at the Veterinary Teaching Hospital of the University of Helsinki were generally treated according to national and hospital recommendations; penicillin G and gentamicin was administered preoperatively and treatment was continued for a median of three days postoperatively. In conclusion, Finnish veterinarians followed well the national prudent use guidelines. Narrow-spectrum antimicrobials were preferred and, for instance, fluoroquinolones were used sparingly. Prescription studies seemed to give good information on antimicrobials usage, especially when combined with complementary information from patient records. A prospective questionnaire study provided a fair amount of valuable data on several animal species. Electronic surveys are worthwhile exploiting in the future.
Resumo:
Tieteellinen tiivistelmä Common scab is one of the most important soil-borne diseases of potato (Solanum tuberosum L.) in many potato production areas. It is caused by a number of Streptomyces species, in Finland the causal agents are Streptomyces scabies (Thaxter) Lambert & Loria and S. turgidiscabies Takeuchi. The scab-causing Streptomyces spp. are well-adapted, successful plant pathogens that survive in soil also as saprophytes. Control of these pathogens has proved to be difficult. Most of the methods used to manage potato common scab are aimed at controlling S. scabies, the most common of the scab-causing pathogens. The studies in this thesis investigated S. scabies and S. turgidiscabies as causal organisms of common scab and explored new approaches for control of common scab that would be effective against both species. S. scabies and S. turgidiscabies are known to co-occur in the same fields and in the same tuber lesions in Finland. The present study showed that both these pathogens cause similar symptoms on potato tubers, and the types of symptoms varied depending on cultivar rather than the pathogen species. Pathogenic strains of S. turgidiscabies were antagonistic to S. scabies in vitro indicating that these two species may be competing for the same ecological niche. In addition, strains of S. turgidiscabies were highly virulent in potato and they tolerated lower pH than those of S. scabies. Taken together these results suggest that S. turgidiscabies has become a major problem in potato production in Finland. The bacterial phytotoxins, thaxtomins, are produced by the scab-causing Streptomyces spp. and are essential for the induction of scab symptoms. In this study, thaxtomins were produced in vitro and four thaxtomin compounds isolated and characterized. All four thaxtomins induced similar symptoms of reduced root and shoot growth, root swelling or necrosis on micro-propagated potato seedlings. The main phytotoxin, thaxtomin A, was used as a selective agent in a bioassay in vitro to screen F1 potato progeny from a single cross. Tolerance to thaxtomin A in vitro and scab resistance in the field were correlated indicating that the in vitro bioassay could be used in the early stages of a resistance breeding program to discard scab-susceptible genotypes and elevate the overall levels of common scab resistance in potato breeding populations. The potential for biological control of S. scabies and S. turgidiscabies using a non-pathogenic Streptomyces strain (346) isolated from a scab lesion and S. griseoviridis strain (K61) from a commercially available biocontrol product was studied. Both strains showed antagonistic activity against S. scabies and S. turgidiscabies in vitro and suppressed the development of common scab disease caused by S. turgidiscabies in the glasshouse. Furthermore, strain 346 reduced the incidence of S. turgidiscabies in scab lesions on potato tubers in the field. These results demonstrated for the first time the potential for biological control of S. turgidiscabies in the glasshouse and under field conditions and may be applied to enhance control of common scab in the future.