253 resultados para 02051120 TM-8
Resumo:
Palladin is a novel actin microfilament associated protein, which together with myotilin and myopalladin forms a novel cytoskeletal IgC2 domain protein family. Whereas the expression of myotilin and myopalladin is limited mainly to striated muscle, palladin is widely expressed in both epithelial and mesenchymal tissues, including heart and the nervous system. Palladin has a complex genetic structure and it is expressed as several different sized and structured splice variants, which also display differences in their expression pattern and interactions. In muscle cells, all the family members localize to the sarcomeric Z-disc, and in non-muscle cells palladin also localizes to the stress-fiber-dense regions, lamellipodia, podosomes and focal adhesions. A common feature of this protein family is the binding to α-actinin, but other interactions are mostly unique to each member. Palladin has been shown to interact with several proteins, including VASP, profilin, Eps8, LASP-1 and LPP. Its domain structure, lack of enzymatic activity and multiple interactions define it as a molecular scaffolding protein, which links together proteins with different functional modalities into large complexes. Palladin has an important role in cytoskeletal regulation, particularly in stress fiber formation and stabilization. This assumption is supported by several experimental results. First, over-expression of palladin in non-muscle cells results in rapid reorganization of the actin cytoskeleton and formation of thick actin bundles. Second, the knock-down of palladin with anti-sense and siRNA techniques or knock-out by genetic methods leads to defective stress fiber formation. Furthermore, palladin is usually up-regulated in situations requiring a highly organized cytoskeleton, such as differentiation of dendritic cells, trophoblasts and myofibroblasts, and activation of astrocytes during glial scar formation. The protein family members have also direct disease linkages; myotilin missense mutations are the cause of LGMD1A and myofibrillar myopathy. Palladin mutations and polymorphisms, on the other hand, have been linked to hereditary pancreatic cancer and myocardial infarction, respectively. In this study we set out to characterize human palladin. We identified several palladin isoforms, studied their tissue distribution and sub-cellular localization. Four novel interaction partners were identified; ezrin, ArgBP2, SPIN90 and Src-kinase.The previously identified interaction between palladin and α-actinin was also characterized in detail. All the identified new binding partners are actin cytoskeleton associated proteins; ezrin links the plasma membrane to the cytoskeleton, ArgBP2 and SPIN90 localize, among other structures, to the lamellipodia and in cardiomyocytes to the Z-disc. Src is a transforming tyrosine kinase, which besides its role in oncogenesis has also important cytoskeletal associations. We also studied palladin in myofibroblasts, which are specialized cells involved in diverse physiological and pathological processes, such as wound healing and tissue fibrosis. We demonstrated that palladin is up-regulated during the differentiation of myofibroblasts in an isoform specific manner, and that this up-regulation is induced by TGF-β via activation of both the SMAD and MAPK signalling cascades. In summary, the results presented here describe the initial characterization of human palladin and offer a basis for further studies.
Resumo:
The leading cause of death in the Western world continues to be coronary heart disease (CHD). At the root of the disease process is dyslipidemia an aberration in the relevant amounts of circulating blood lipids. Cholesterol builds up in the arterial wall and following rupture of these plaques, myocardial infarction or stroke can occur. Heart disease runs in families and a number of hereditary forms are known. The leading cause of adult dyslipidemia presently however is overweight and obesity. This thesis work presents an investigation of the molecular genetics of common, hereditary dyslipidemia and the tightly related condition of obesity. Familial combined hyperlipidemia (FCHL) is the most common hereditary dyslipidemia in man with an estimated population prevalence of 1-6%. This complex disease is characterized by elevated levels of serum total cholesterol, triglycerides or both and is observed in about 20% of individuals with premature CHD. Our group identified the disease to be associated with genetic variation in the USF1 transcription factor gene. USF1 has a key role in regulating other genes that control lipid and glucose metabolism as well as the inflammatory response all central processes in the progression of atherosclerosis and CHD. The first two works of this thesis aimed at understanding how these USF1 variants result in increased disease risk. Among the many, non-coding single-nucleotide polymorphisms (SNPs) that associated with the disease, one was found to have a functional effect. The risk-enhancing allele of this SNP seems to eradicate the ability of the important hormone insulin to induce the expression of USF1 in peripheral tissues. The resultant changes in the expression of numerous USF1 target genes over time probably enhance and accelerate the atherogenic processes. Dyslipidemias often represent an outcome of obesity and in the final work of this thesis we wanted to address the metabolic pathways related to acquired obesity. It is recognized that active processes in adipose tissue play an important role in the development of dyslipidemia, insulin resistance and other pathological conditions associated with obesity. To minimize the confounding effects of genetic differences present in most human studies, we investigated a rare collection of identical twins that differed significantly in the amount of body fat. In the obese, but otherwise healthy young adults, several notable changes were observed. In addition to chronic inflammation, the adipose tissue of the obese co-twins was characterized by a marked (47%) decrease in amount of mitochondrial DNA (mtDNA) a change associated with mitochondrial dysfunction. The catabolism of branched chain amino acids (BCAAs) was identified as the most down-regulated process in the obese co-twins. A concordant increase in the serum level of these insulin secretagogues was identified. This hyperaminoacidemia may provide the feed-back signal from insulin resistant adipose tissue to the pancreas to ensure an appropriately augmented secretory response. The down regulation of BCAA catabolism correlated closely with liver fat accumulation and insulin. The single most up-regulated gene (5.9 fold) in the obese co-twins was osteopontin (SPP1) a cytokine involved in macrophage recruitment to adipose tissue. SPP1 is here implicated as an important player in the development of insulin resistance. These studies of exceptional study samples provide better understanding of the underlying pathology in common dyslipidemias and other obesity associated diseases important for future improvement of intervention strategies and treatments to combat atherosclerosis and coronary heart disease.
Resumo:
Developmental dyslexia is a specific reading disability, which is characterised by unexpected difficulty in reading, spelling and writing despite adequate intelligence, education and social environment. It is the most common childhood learning disorder affecting 5-10 % of the population and thus constitutes the largest portion of all learning disorders. It is a persistent developmental failure although it can be improved by compensation. According to the most common theory, the deficit is in phonological processing, which is needed in reading when the words have to be divided into phonemes, or distinct sound elements. This occurs in the lowest level of the hierarchy of the language system and disturbs processes in higher levels, such as understanding the meaning of words. Dyslexia is a complex genetic disorder and previous studies have found nine locations in the genome that associate with it. Altogether four susceptibility genes have been found and this study describes the discovery of the first two of them, DYX1C1 and ROBO1. The first clues were obtained from two Finnish dyslexic families that have chromosomal translocations which disrupt these genes. Genetic analyses supported their role in dyslexia: DYX1C1 associates with dyslexia in the Finnish population and ROBO1 was linked to dyslexia in a large Finnish pedigree. In addition a genome-wide scan in Finnish dyslexic families was performed. This supported the previously detected dyslexia locus on chromosome 2 and revealed a new locus on chromosome 7. Dyslexia is a neurological disorder and the neurobiological function of the susceptibility genes DYX1C1 and ROBO1 are consistent with this. ROBO1 is an axon guidance receptor gene, which is involved in axon guidance across the midline in Drosophila and axonal pathfinding between the two hemispheres via the corpus callosum, as well as neuronal migration in the brain of mice. The translocation and decreased ROBO1 expression in dyslexic individuals indicate that two functional copies of ROBO1 gene are required in reading. DYX1C1 was a new gene without a previously known function. Inhibition of Dyx1c1 expression showed that it is needed in normal brain development in rats. Without Dyx1c1 protein, the neurons in the developing brain will not migrate to their final position in the cortex. These two dyslexia susceptibility genes DYX1C1 and ROBO1 revealed two distinct neurodevelopmental mechanisms of dyslexia, axonal pathfinding and neuronal migration. This study describes the discovery of the genes and our research to clarify their role in developmental dyslexia.
Resumo:
Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.
Resumo:
Paracrine regulation between the components of the tumour microenvironment cancer cells, activated fibroblasts, immune and endothelial cells is under intense investigation. The signals between the different cell types are mediated by soluble factors, such as growth factors, proinflammatory cytokines and proteolytic enzymes. Nemosis is an experimental in vitro model of fibroblast activation, leading to increased production of such mediators. Nemotic activation of fibroblasts occurs as they are forced to cluster thereby forming a multicellular spheroid. The aim of the present studies was to elucidate the mechanisms underlying the nemotic response of cancer-associated fibroblasts (CAF) and the role of nemosis in paracrine regulation between activated fibroblasts and benign and malignant epithelial cells. The results presented in this thesis demonstrate that the nemotic response of CAFs and normal fibroblasts differs, and inter-individual variations exist between fibroblast populations. In co-culture experiments, fibroblasts increased colony formation of squamous cell carcinoma (SCC) cells, and CAFs further augmented this, highlighting the tumour-evolving properties of CAFs. Furthermore, fibroblast monolayers in those co-cultures started to cluster spontaneously. This kind of spontaneous nemosis response might take place also in vivo, although more direct evidence of this still needs to be obtained. The HaCaT skin carcinoma progression model was used to study the effects of benign and malignant keratinocytes on fibroblast nemosis. Benign HaCaT cells inhibited fibroblast nemosis, observed as inhibition of cyclooxygenase 2 (COX-2) induction in nemotic spheroids. In contrast, malignant HaCaTs further augmented the nemotic response by increasing expression of COX-2 and the growth factors hepatocyte growth factor / scatter factor (HGF/SF) and vascular endothelial growth factor (VEGF), as well as causing a myofibroblastic differentiation of nemotic fibroblasts into fibroblasts resembling CAFs. On the other side of this reciprocal signalling, factors secreted into conditioned medium by the nemotic fibroblasts promoted proliferation and motility of the HaCaT cell lines. Notably, the nemotic fibroblast medium increased the expression of p63, a transcription factor linked to carcinogenesis, also in the highly metastatic HaCaT cells. These results emphasize the paracrine role of factors secreted by activated fibroblasts in driving tumour progression. We also investigated the epithelial-mesenchymal transition (EMT) of the HaCaT clones in response to transforming growth factor β (TGF-β), which is a well-characterized inducer of EMT. TGF-β caused growth arrest and loss of epithelial cell junctions in the HaCaT derivatives, but mesenchymal markers were not induced, suggesting a partial, but not complete EMT response. Inflammation induced by COX-2 has been proposed to be a key mechanism in EMT of benign cells. Corroborating this notion, COX-2 was induced only in benign, not in malignant HaCaT derivatives. Furthermore, in cells in which TGF-β caused COX-2 induction, migration was clearly augmented. The concept of treating cancer is changing from targeting solely the cancer cells to targeting the whole microenvironment. The results of this work emphasise the role of activated fibroblasts in cancer progression and that CAFs should also be taken into consideration in the treatment of cancer. The results from these studies suggests that nemosis could be used as a diagnostic tool to distinguish in vitro activated fibroblasts from tumour stroma and also in studying the paracrine signalling that is mediated to other cell types via soluble factors.
Resumo:
In the first part of this thesis the association of different forms of sinonasal diseases and plasma concentrations of C3, C4, immunoglobulins, immunoglobulin G subclasses, C4A and C4B gene numbers were studied in 287 adult patients and 150 sex-matched adult controls. Patients were well characterized and stratified into groups using strict clinical criteria and females and males were also studied as separate groups. Severe primary antibody antibody deficiencies were rare in patients coming to sinonasal operations. Female patients had more recurrent sinusitis and other mucosal infections and males had more nasal polyposis. Upregulation of complement activity was seen in acute rhinosinusitis patients (high levels of plasma C3, C4, and complement classical pathway activity CH50) and male patients coming to sinonasal operations (high levels of plasma C3 and C4). In females, total and partial C4B deficiencies and lower levels of IgG1 and IgG3 were associated with rhinosinusitis leading to sinonasal operations. C4A deficiencies were found to predispose to severe chronic rhinosinusitis in females and males. In female patients with chronic or recurrent rhinosinusitis with nasal polyposis C4B deficiencies seem to predispose to the disease, but in males with a similar disease C4B deficiencies seem to be protective. This suggests a different pathophysiology between sexes in this form of sinonasal disease. In the second part of this thesis work 213 children coming to elective tonsillectomy were studied and compared with 155 randomly selected school children. An association with recurrent upper respiratory tract infections and hypersensitivity disorders was seen especially in children under 7 years of age. However, this association was not seen in levels of specific IgE to respiratory allergens in the same age group. Both symptomatic respiratory allergy and specific IgE to respiratory allergens became more common in boys than girls over 7 years of age. We were able to show that although both rhinoviruses and bacterial pathogens were found in the tonsils, no association between their presence and clinical forms of tonsillar disease was seen. The ability of GAS to bind complement regulators FH and C4BP did not differ between strains causing tonsillar diseases or septicemia, suggesting that other virulence mechanisms of the bacteria are more important.
Resumo:
Recurrent miscarriage (RM) is defined as three consecutive pregnancy failures and is estimated to affect ~1% of couples trying to conceive. The cause of RM remains unknown in approximately 50% of cases. In this study, it was hypothesized that some of the underlying factors yet to be discovered are genetic. The aim was to search for mutations in genes AMN, EPCR, TM, and p53 known to cause miscarriage in mouse models and thereby find new genetic causes for unexplained miscarriages in humans. In addition, the mitochondrial genome was studied because mitochondria are involved in processes important in early development. Furthermore, sex chromosome characteristics suggested to underlie miscarriage were also studied. A total of 40 couples and 8 women with unexplained RM were collected for this study and screened for mutations in the candidate genes. Six interesting exonic or potential splice site disrupting variations were detected. However, their phenotypic effects cannot be determined without further investigations. Additionally, an association between the C11992A polymorphism of the p53 gene and RM was detected. The results indicate that women carrying the C/A or A/A genotype have a two-fold higher risk for RM than women with a C/C genotype. This strengthens the results of previous studies reporting that p53 sequence variations may cause miscarriage. The role of variation C11992A in embryonic development is, however, difficult to predict without further studies When screening the mitochondrial genome a heteroplasmic mtDNA variation was found in an unexpected high number of women, as heteroplasmic variations are reported to be rare. One novel variation and 18 previously reported polymorphisms were detected in the mitochondrial genome. Although the detected variations are likely to be neutral polymorphisms, a role in the aetiology of miscarriage cannot be excluded as some mtDNA variations may be pathogenic only when a threshold is reached. Recent publications have reported skewed X chromosome inactivation and Y chromosome microdeletions to be associated with RM. Therefore, these sex chromosome abnormalities in the context of RM were investigated. No associations between skewed X chromosome inactivation or Y chromosome microdeletions and RM in the Finnish patients were detected. Data on ancestral birthplaces of the patients were collected to study any possible geographic clustering, which would indicate a common predisposing factor. The results showed clustering of the birthplaces in eastern Finland in a subset of patients. This suggests a possibility of an enriched susceptibility gene which may contribute to RM.
Resumo:
Neuronal ceroid lipofuscinoses (NCLs) are a family of inherited pediatric neurodegenerative disorders, leading to retinal degeneration, death of selective neuronal populations and accumulation of autofluorscent ceroid-lipopigments. The clinical manifestations are generally similar in all forms. The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCLFin) is a form of NCL, especially enriched in the Finnish population. The aim of this thesis was to analyse the brain pathology of vLINCLFin utilising the novel Cln5-/- mouse model. Gene expression profiling of the brains of already symptomatic Cln5-/- mice revealed that inflammation, neurodegeneration and defects in myelinization are the major characteristics of the later stages of the disease. Histological characterization of the brain pathology confirmed that the thalamocortical system is affected in Cln5-/- mice, similarly to the other NCL mouse models. However, whereas the brain pathology in all other analyzed NCL mice initiate in the thalamus and spread only months later to the cortex, we observed that the sequence of events is uniquely reversed in Cln5-/- mice; beginning in the cortex and spreading to the thalamus only months later. We could also show that even though neurodegeneration is inititated in the cortex, reactive gliosis and loss of myelin are evident in specific nuclei of the thalamus already in the 1 month old brain. To obtain a deeper insight into the disturbed metabolic pathways, we performed gene expression profiling of presymptomatic mouse brains. We validated these findings with immunohistological analyses, and could show that cytoskeleton and myelin were affected in Cln5-/- mice. Comparison of gene expression profiling results of Cln5-/- and Cln1-/- mice, further highlighted that these two NCL models share a common defective pathway, leading to disturbances in the neuronal growth cone and cytoskeleton. Encouraged by the evidence of this defected pathway, we analyzed the molecular interactions of NCL-proteins and observed that Cln5 and Cln1/Ppt1 proteins interact with each other. Furthermore, we demonstrated that Cln5 and Cln1/Ppt1 share an interaction partner, the F1-ATP synthase, potentially linking both vLINCLFIN and INCL diseases to disturbed lipid metabolism. In addition, Cln5 was shown to interact with other NCL proteins; Cln2, Cln3, Cln6 and Cln8, implicating a central role for Cln5 in the NCL pathophysiology. This study is the first to describe the brain pathology and gene expression changes in the Cln5-/- mouse. Together the findings presented in this thesis represent novel information of the disease processes and the molecular mechanisms behind vLINCLFin and have highlighted that vLINCLFin forms a very important model to analyze the pathophysiology of NCL diseases.
Resumo:
Nemaline myopathy (NM) is a rare muscle disorder characterised by muscle weakness and nemaline bodies in striated muscle tissue. Nemaline bodies are derived from sarcomeric Z discs and may be detected by light microscopy. The disease can be divided into six subclasses varying from very severe, in some cases lethal forms to milder forms. NM is usually the consequence of a gene mutation and the mode of inheritance varies between NM subclasses and different families. Mutations in six genes are known to cause NM; nebulin (NEB), alpha-actin, alpha-tropomyosin (TPM3), troponin T1, beta-tropomyosin (TPM2) and cofilin 2, of which nebulin and -actin are the most common. One of the main interests of my research is NEB. Nebulin is a giant muscle protein (600-900 kDa) expressed mainly in the thin filaments of striated muscle. Mutations in NEB are the main cause of autosomal recessive NM. The gene consists of 183 exons. Thus being gigantic, NEB is very challenging to investigate. NEB was screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC) and sequencing. DNA samples from 44 families were included in this study, and we found and published 45 different mutations in them. To date, we have identified 115 mutations in NEB in a total of 96 families. In addition, we determined the occurrence in a world-wide sample cohort of a 2.5 kb deletion containing NEB exon 55 identified in the Ashkenazi Jewish population. In order to find the seventh putative NM gene a genome-wide linkage study was performed in a series of Turkish families. In two of these families, we identified a homozygous mutation disrupting the termination signal of the TPM3 gene, a previously known NM-causing gene. This mutation is likely a founder mutation in the Turkish population. In addition, we described a novel recessively inherited distal myopathy, named distal nebulin myopathy, caused by two different homozygous missense mutations in NEB in six Finnish patients. Both mutations, when combined in compound heterozygous form with a more disruptive mutation, are known to cause NM. This study consisted of molecular genetic mutation analyses, light and electron microscopic studies of muscle biopsies, muscle imaging and clinical examination of patients. In these patients the distribution of muscle weakness was different from NM. Nemaline bodies were not detectable with routine light microscopy, and they were inconspicuous or absent even using electron microscopy. No genetic cause was known to underlie cap myopathy, a congenital myopathy characterised by cap-like structures in the muscle fibres, until we identified a deletion of one codon of the TPM2 gene, in a 30-year-old cap myopathy patient. This mutation does not change the reading frame of the gene, but a deletion of one amino acid does affect the conformation of the protein produced. In summary, this thesis describes a novel distal myopathy caused by mutations in the nebulin gene, several novel nebulin mutations associated with nemaline myopathy, the first molecular genetic cause of cap myopathy, i.e. a mutation in the beta-tropomyosin gene, and a founder mutation in the alpha-tropomyosin gene underlying autosomal recessive nemaline myopathy in the Turkish population.
Resumo:
Vascular intimal hyperplasia is a major complication following angioplasty. The hallmark feature of this disorder is accumulation of dedifferentiated smooth muscle cells (SMCs) to the luminal side of the injured artery, cellular proliferation, migration, and synthesis of extracellular matrix. This finally results in intimal hyperplasia, which is currently considered an untreatable condition. According to current knowledge, a major part of neointimal cells derive from circulating precursor cells. This has outdated the traditional in vitro cell culture methods of studying neointimal cell migration and proliferation using cultured medial SMCs. Somatostatin and some of its analogs with different selectivity for the five somatostatin receptors (sst1 through sst5) have been shown to have vasculoprotective properties in animal studies. However, clinical trials using analogs selective for sst2/sst3/sst5 to prevent restenosis after percutaneous transluminal coronary angioplasty (PTCA) have failed to show any major benefits. Sirolimus is a cell cycle inhibitor that has been suggested to act synergistically with the protein-tyrosine kinase inhibitor imatinib to inhibit intimal hyperplasia in rat already at well-tolerated submaximal oral doses. The mechanisms behind this synergy and its long-term efficacy are not known. The aim of this study was to set up an ex vivo vascular explant culture model to measure neointimal cell activity without excluding the participation of circulating progenitor cells. Furthermore, two novel potential vasculoprotective treatment strategies were evaluated in detail in rat models of intimal hyperplasia and in the ex vivo explant model: sst1/sst4-selective somatostatin receptor analogs and combination treatment with sirolimus and imatinib. This study shows how whole vessel explants can be used to study the kinetics of neointimal cells and their progenitors, and to evaluate the anti-migratory and anti-proliferative properties of potential vasculoprotective compounds. It also shows how the influx of neointimal progenitor cells occurs already during the first days after vascular injury, how the contribution of cell migration is more important in the injury response than cell proliferation, and how the adventitia actively contribute in vascular repair. The vasculoprotective effect of somatostatin is mediated preferentially through sst4, and through inhibition of cell migration rather than of proliferation, which may explain why sst2/sst3/sst5-selective analogs have failed in clinical trials. Furthermore, a brief early oral treatment with the combination of sirolimus and imatinib at submaximal doses results in long-term synergistic suppression of intimal hyperplasia. The synergy is a result of inhibition of post-operative thrombocytosis and leukocytosis, inhibition of neointimal cell migration to the injury-site, and maintenance of cell integrity by inhibition of apoptosis and SMC dedifferentiation. In conclusion, the influx of progenitor cells already during the first days after injury and the high neointimal cell migratory activity underlines the importance of early therapeutic intervention with anti-migratory compounds to prevent neointimal hyperplasia. Sst4-selective analogs and the combination therapy with sirolimus and imatinib represent potential targets for the development of such vasculoprotective therapies.
Resumo:
Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies. This thesis investigates variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD. This candidate gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene is a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function. First, we examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts. Our data suggested that USF1 contributes to these CVD risk factors at the population level. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual. Second, we investigated how variation at the USF1 locus contributes to atherosclerotic lesions of the coronary arteries and abdominal aorta. For this, we used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. USF1 variation significantly associated with areas of several types of lesions, especially with calcification of the arteries. Next, we tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD. The atherosclerosis-associated risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in the Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies. Finally, as some of the low-yield DNA samples of the Finnish follow-up study cohort needed to be whole-genome amplified (WGA) prior to genotyping, we evaluated whether the produced WGA genotypes were of good quality. Although the samples giving genotype discrepancies could not be detected before genotyping with standard laboratory quality control methods, our results suggested that enhanced quality control at the time of the genotyping could identify such samples. In addition, combining two WGA reactions into one pooled DNA sample for genotyping markedly reduced the number of discrepancies and samples showing them. In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. This USF1 study, and other studies with low DNA yield of some samples, can benefit from whole genome amplification of the low-yield samples prior to genotyping. Careful quality control procedures are, however, needed in WGA genotyping.
Resumo:
Identification of genes predisposing to tumor syndromes has raised general awareness of tumorigenesis. Genetic testing of tumor susceptibility genes aids the recognition of individuals at increased risk of tumors. Identification of novel predisposing genes enables further studies concerning the classification of potential associated tumors and the definition of target patient group. Pituitary adenomas are common, benign neoplasms accounting for approximately 15% of all intracranial tumors. Accurate incidence estimation is challenging since a great portion of these adenomas are small and asymptomatic. Clinically relevant adenomas, that cause symptoms due to the expansion of the cell mass or the over-secretion of normally produced hormones, occur in approximately one of 1 000 individuals. Although the majority of pituitary adenomas are sporadic, a minority occur as components of familial syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 syndrome is caused by germ-line mutations in the MEN1 gene, whereas most of the CNC patients carry the mutated protein kinase A (PKA) regulatory subunit-1-α (PRKAR1A) gene. Recently, other conditions predisposing to endocrine tumors have been identified: Pituitary Adenoma Predisposition (PAP) and MEN type 4 (MEN4). PAP was originally identified in a genetically homogeneous Finnish population. In a population based cohort from Northern Finland, aryl hydrocarbon receptor-interacting protein (AIP) gene mutations were found in 16% of all patients diagnosed with growth hormone (GH) producing pituitary adenoma, and in 40% of the subset of patients who were diagnosed under the age of 35 years. Since AIP mutations were originally described in a defined, homogeneous population from Northern Finland, it was relevant to study whether mutations also occur in more heterogeneous populations. In patient cohorts with different ethnic origins and variable clinical phenotypes, germ-line AIP mutations were detectable at low frequencies (range 0.8-7.4%). AIP mutation-positive patients were often diagnosed with a GH-producing adenoma at a young age, and usually had no family history of endocrine tumors. The low frequency of AIP mutations in randomly selected patients, and the lack of any family history of pituitary adenomas create a challenge for the identification of PAP patients. Our preliminary study suggests that AIP immunohistochemistry may serve as a pre-screening tool to distinguish between the AIP mutation-negative and the mutation-positive tumors. Tumors of various endocrine glands are components of MEN1 and CNC syndromes. Somatic MEN1 and PRKAR1A mutations in sporadic pituitary adenomas are rare, but occur in some of the other tumors related to these syndromes. The role of AIP mutations in endocrine neoplasia was studied and our results indicated that somatic AIP mutations are rare or non-existent in sporadic tumors of endocrine glands (0 of 111). Furthermore, germ-line AIP mutations in prolactin producing adenomas (2 of 9) confirmed the role of this pituitary tumor type in the PAP phenotype. Thyroid disorders are common in the general population, and the majority of them are sporadic. Interestingly, it has been suggested that thyroid disorders might be more common in PAP families. For this reason we studied germ-line AIP mutations in 93 index cases from familial non-medullary thyroid cancer (NMTC) families. The underlying gene or genes for familial NMTC have not been identified yet. None of the patients had any potentially pathogenic AIP mutation. This suggests that AIP is unlikely to play a role in familial NMTCs. A novel multiple endocrine syndrome was originally described in rats with phenotypic features of human MEN type 1 and 2. Germ-line mutations of cyclin-dependent kinase inhibitor 1B (CDKN1B also known as p27Kip1) gene were reported later in these rats and a germ-line mutation was also identified in one human family with MEN1-like phenotype (later named MEN4). To confirm the importance of this gene’s mutations in humans, we performed a mutation screening in MEN-like patients and in patients with pituitary adenoma. Our results indicate that CDKN1B/p27Kip1 mutations appear in a small portion of MEN1-like patients (one of 36), and that such mutations are rare or non-existent in both familial (0 of 19) and sporadic pituitary adenoma patients (0 of 50). In conclusion, this work strengthens the tumor susceptibility role of AIP and CDKN1B/p27Kip1 in endocrine neoplasia. Clarifying the PAP phenotype facilitates the identification of potential AIP mutation carriers. Genetic counseling can be offered to the relatives and follow-up of the mutation carriers can be organized, hence an earlier diagnosis is feasible.
Resumo:
Poikkijuovaisen luuranko- ja sydänlihaksen supistumisyksikkö, sarkomeeri, koostuu tarkoin järjestyneistä aktiini- ja myosiinisäikeistä. Rakenne eroaa muista solutyypeistä, joissa aktiinisäikeistö muovautuu jatkuvasti ja sen järjestyminen säätelee solun muotoa, solujakautumista, soluliikettä ja solunsisäisten organellien kuljetusta. Myotilin, palladin ja myopalladin kuuluvat proteiiniperheeseen, jonka yhteispiirteenä ovat immunoglobuliinin kaltaiset (Igl) domeenit. Proteiinit liittyvät aktiinitukirankaan ja niiden arvellaan toimivan solutukirangan rakenne-elementteinä ja säätelijöinä. Myotilinia ja myopalladinia ilmennetään poikkijuovaisessa lihaksessa. Sen sijaan palladinin eri silmukointimuotoja tavataan monissa kudostyypeissä kuten hermostossa, ja eri muodoilla saattaa olla solutyypistä riippuvia tehtäviä. Poikkijuovaisessa lihaksessa kaikki perheen jäsenet sijaitsevat aktiinisäikeitä yhdistävässä Z-levyssä ja ne sitovat Z-levyn rakenneproteiinia, -aktiniinia. Myotilingeenin pistemutaatiot johtavat periytyviin lihastauteihin, kun taas palladinin mutaatioiden on kuvattu liittyvän periytyvään haimasyöpään ja lisääntyneeseen sydäninfarktin riskiin. Tässä tutkimuksessa selvitettin myotilinin ja pallainin toimintaa. Kokeissa löydettiin uusia palladinin 90-92kDa alatyyppiin sitoutuvia proteiineja. Yksi niistä on aktiinidynamiikkaa säätelevä profilin. Profilinilla on kahdenlaisia tehtäviä; se edesauttaa aktiinisäikeiden muodostumista, mutta se voi myös eristää yksittäisiä aktiinimolekyylejä ja edistää säikeiden hajoamista. Solutasolla palladinin ja profilinin sijainti on yhtenevä runsaasti aktiinia sisältävillä solujen reuna-alueilla. Palladinin ja profilinin sidos on heikko ja hyvin dynaaminen, joka sopii palladinin tehtävään aktiinisäideiden muodostumisen koordinoijana. Toinen palladinin sitoutumiskumppani on aktiinisäikeitä yhteensitova -aktiniini. -Aktiniini liittää solutukirangan solukalvon proteiineihin ja ankkuroi solunsisäisiä viestintämolekyylejä. Sitoutumista välittävä alue on hyvin samankaltainen palladinissa ja myotilinissa. Luurankolihaksen liiallinen toistuva venytys muuttaa Z-levyjen rakennetta ja muotoa. Prosessin aikana syntyy uusia aktiinifilamenttejä sisältäviä tiivistymiä ja lopulta uusia sarkomeereja. Löydöstemme perusteella myotilinin uudelleenjärjestyminen noudattaa aktiinin muutoksia. Tämä viittaa siihen, että myotilin liittää yhteen uudismuodostuvia aktiinisäikeitä ja vakauttaa niitä. Myotilin saattaa myös ankkuroida viesti- tai rakennemolekyylejä, joiden tehtävänä on edesauttaa Z-levyjen uudismuodostusta. Tulostemme perusteella arvelemme, että myotilin toimii Z-levyjen rakenteen vakaajana ja aktiinisäikeiden säätelijänä. Palladinin puute johtaa sikiöaikaiseen kuolemaan hiirillä, mutta myotilinin puutoksella ei ole samanlaisia vaikutuksia. Tuotettujen myotilin poistogeenisten hiirten todetiin syntyvän ja kehittyvän normaalisti eikä niillä esiintynyt rakenteellisia tai toiminnallisia häiriöitä. Toisaalta aiemmissa kokeissa, joissa hiirille on siirretty ihmisen lihastautia aikaansaava myotilingeeni, nähdään samankaltaisia kuin sairailla ihmisillä. Näin ollen muuntunut myotilin näyttä olevan lihaksen toiminnalle haitallisempi kuin myotilinin puute. Myotilinin ja palladinin yhteisvaikutusta selvittääksemme risteytimme myotilin poistegeenisen hiiren ja hiirilinjan, joka ilmentää puutteellisesti palladinin 200 kDa muotoa. Puutteellisesti 200 kDa palladinia ilmentävien hiirten sydänlihaksessa todettiin vähäisiä hienorakenteen muutoksia, mutta risteytetyillä hiirillä tavattiin rakenteellisia ja toiminnallisia muutoksia myös luurankolihaksessa. Tulosten perusteella voidaan todeta, että palladinin 200 kDa muoto säätelee sydänlihassolujen rakennetta. Luurankolihaksessa sen sijaan myotilinilla ja palladinilla näyttäisi olevan päällekkäisiä tehtäviä.
Resumo:
Along with the increased life span of individuals, the burden of old age-associated diseases has inevitably increased. Alzheimer s disease (AD), probably the most well known geriatric disease, belongs to the old age-associated amyloid diseases. The purpose of this study was to investigate the frequency, genetic and health-associated risk factors, mutual association, and amyloid proteins in two old age-associated amyloid disorders senile systemic amyloidosis (SSA) and cerebral amyloid angiopathy (CAA) as part of the prospective population-based Vantaa 85+ autopsy study on a Finnish population aged 85 years or more (Studies I-III), completed with a case report on a patient with advanced AGel amyloidosis (Study IV). The numbers of patients investigated in the studies (I-III) were 256, 74, and 63, respectively. The diagnosis and grading of amyloid were based upon histological examination of tissue samples obtained post mortem and stained with Congo red. The amyloid fibril and associated proteins were characterized by immunohistochemical staining methods. The genotype frequencies of 20 polymorphisms in 9 genes and information on health-associated risk factors in subjects with and without SSA and CAA were compared. In a Finnish population ≥ 95 years of age, SSA and CAA occurred in 36% and 49% of the subjects, respectively. In total, two-thirds of these very elderly individuals had SSA, CAA, or both. However, in only 14% of the population these two conditions co-occurred. In subjects 85 years or older, the prevalence of SSA was 25%. In this population, SSA was associated with age at the time of death (p=0.002), myocardial infarctions (MIs; p=0.004), the G/G (Val/Val) genotype of the exon 24 polymorphism in the alpha2-macroglobulin (α2M) gene (p=0.042) and with the H2 haplotype of the tau gene (p=0.016). In contrast, the presence of CAA was strongly associated with APOE e4 (p=0.0003), with histopathological AD (p=0.0005), and with clinical dementia (p=0.01) in both e4+ (p=0.02) and e4- (p=0.06) individuals. Apart from demonstrating the amyloid fibril proteins, complement proteins 3d (C3d) and 9 (C9) were detected in the amyloid deposits of CAA and AGel amyloidosis, and α2M protein was found in fibrous scar tissue close to SSA. In conclusion, this first population based study on SSA shows that both SSA and CAA are common in very elderly individuals. Old age, MIs, the exon 24 polymorphism of the α2M gene, and H1/H2 polymorphism of the tau gene associate with SSA while clinical dementia and APOE ε4 genotype associate with CAA. The high prevalence of CAA, combined with its association with clinical dementia independent of APOE genotype, neuropathological AD, or SSA, also highlights its clinical significance in the very aged, among which the serious end stage complications of CAA, namely multiple infarctions and hemorrhages, are rare. The report on a patient having advanced AGel amyloidosis added knowledge on the disease and showed that this generally benign condition occasionally may lead to death. Further studies are warranted to confirm the findings in other populations. Also, the role of α2M and tau in the pathogenesis of SSA and the involvement of complement in the process of amyloid beta (Aβ) protein elimination from the brain remain to be clarified. Finally, the high prevalence of SSA in the elderly raises the need for prospective clinical studies to define its clinical significance.
Resumo:
Burnt area mapping in humid tropical insular Southeast Asia using medium resolution (250-500m) satellite imagery is characterized by persisting cloud cover, wide range of land cover types, vast amount of wetland areas and highly varying fire regimes. The objective of this study was to deepen understanding of three major aspects affecting the implementation and limits of medium resolution burnt area mapping in insular Southeast Asia: 1) fire-induced spectral changes, 2) most suitable multitemporal compositing methods and 3) burn scars patterns and size distribution. The results revealed a high variation in fire-induced spectral changes depending on the pre-fire greenness of burnt area. It was concluded that this variation needs to be taken into account in change detection based burnt area mapping algorithms in order to maximize the potential of medium resolution satellite data. Minimum near infrared (MODIS band 2, 0.86μm) compositing method was found to be the most suitable for burnt area mapping purposes using Moderate Resolution Imaging Spectroradiometer (MODIS) data. In general, medium resolution burnt area mapping was found to be usable in the wetlands of insular Southeast Asia, whereas in other areas the usability was seriously jeopardized by the small size of burn scars. The suitability of medium resolution data for burnt area mapping in wetlands is important since recently Southeast Asian wetlands have become a major point of interest in many fields of science due to yearly occurring wild fires that not only degrade these unique ecosystems but also create regional haze problem and release globally significant amounts of carbon into the atmosphere due to burning peat. Finally, super-resolution MODIS images were tested but the test failed to improve the detection of small scars. Therefore, super-resolution technique was not considered to be applicable to regional level burnt area mapping in insular Southeast Asia.