103 resultados para genetic disorder


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is a complex disease with multifactorial aetiology. Both genetic and environmental factors contribute to the disease risk. The lifetime risk for CVD differs markedly between men and women, men being at increased risk. Inflammatory reaction contributes to the development of the disease by promoting atherosclerosis in artery walls. In the first part of this thesis, we identified several inflammatory related CVD risk factors associating with the amount of DNA from whole blood samples, indicating a potential source of bias if a genetic study selects the participants based on the available amount of DNA. In the following studies, this observation was taken into account by applying whole genome amplification to samples otherwise subjected to exclusion due to very low DNA yield. We continued by investigating the contribution of inflammatory genes to the risk for CVD separately in men and women, and looked for sex-genotype interaction. In the second part, we explored a new candidate gene and its role in the risk for CVD. Selenoprotein S (SEPS1) is a membrane protein residing in the endoplasmic reticulum where it participates in retro-translocation of unfolded proteins to cytosolic protein degradation. Previous studies have indicated that SEPS1 protects cells from oxidative stress and that variations in the gene are associated with circulating levels of inflammatory cytokines. In our study, we identified two variants in the SEPS1 gene, which associated with coronary heart disease and ischemic stroke in women. This is, to our knowledge, the first study suggesting a role of SEPS1 in the risk for CVD after extensively examining the variation within the gene region. In the third part of this thesis, we focused on a set of seven genes (angiotensin converting enzyme, angiotensin II receptor type I, C-reactive protein (CRP), and fibrinogen alpha-, beta-, and gamma-chains (FGA, FGB, FGG)) related to inflammatory cytokine interleukin 6 (IL6) and their association with the risk for CVD. We identified one variant in the IL6 gene conferring risk for CVD in men and a variant pair from IL6 and FGA genes associated with decreased risk. Moreover, we identified and confirmed an association between a rare variant in the CRP gene and lower CRP levels, and found two variants in the FGA and FGG genes associating with fibrinogen. The results from this third study suggest a role for the interleukin 6 pathway genes in the pathogenesis of CVD and warrant further studies in other populations. In addition to the IL6 -related genes, we describe in this thesis several sex-specific associations in other genes included in this study. The majority of the findings were evident only in women encouraging other studies of cardiovascular disease to include and analyse women separately from men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia due to cerebellar cortical atrophy, infantile- or childhood-onset bilateral cataracts, progressive myopathy, and mild to severe mental retardation. Additional features include hypergonadotropic hypogonadism, various skeletal abnormalities, short stature, and strabismus. The neuroradiologic hallmarks are hypoplasia of both the vermis and cerebellar hemispheres. The histopathologic findings include severe cerebellar atrophy and loss of Purkinje and granule cells. The common pathologic findings in muscle biopsy are variation in muscle fiber size, atrophic fibers, fatty replacement, and rimmed vacuole formation. The presence of marked cerebellar atrophy with myopathy distinguishes MSS from another rare syndrome, the congenital cataracts, facial dysmorphism, and neuropathy syndrome (CCFDN). Previously, work by others had resulted in the identification of an MSS locus on chromosome 5q31. A subtype of MSS with myoglobinuria and neuropathy had been linked to the CCFDN locus on chromosome 18qter, at which mutations in the CTDP1 gene had been identified. We confirmed linkage to the previously identified locus on chromosome 5q31 in two Finnish families with eight affected individuals, reduced the critical region by fine-mapping, and identified SIL1 as a gene underlying MSS. We found a common homozygous founder mutation in all Finnish patients. The same mutation was also present in patient samples from Norway and Sweden. Altogether, we identified eight mutations in SIL1, including nonsense, frameshift, splice site alterations, and one missense mutation. SIL1 encodes a nucleotide exchange factor for the endoplasmic reticulum (ER) resident heat-shock protein 70 chaperone GRP78. GRP78 functions in protein synthesis and quality control of the newly synthesized polypeptides. It senses and responds to stressful cellular conditions. We showed that in mice, SIL1 and GRP78 show highly similar spatial and temporal tissue expression in developing and mature brain, eye, and muscle. Studying endogenous proteins in mouse primary hippocampal neurons, we found that SIL1 and GRP78 colocalize and that SIL1 localizes to the ER. We studied the subcellular localization of two mutant proteins, a missense mutant found in two patients and an artificial mutant lacking the ER retrieval signal, and found that both mutant proteins formed aggregates within the ER. Well in line with our findings and the clinical features of MSS, recent work by Zhao et al. showed that a truncation of SIL1 causes ataxia and cerebellar Purkinje cell loss in the naturally occurring woozy mutant mouse. Prior to Purkinje cell degeneration, the unfolded protein response is initiated and abnormal protein accumulations are present. MSS thus joins the group of protein misfolding and accumulation diseases. These findings highlight the importance of SIL1 and the role of the ER in neuronal function and survival. The results presented in this thesis provide tools for the molecular genetic diagnostics of MSS and give a basis for future studies on the molecular pathogenesis of MSS. Understanding the mechanisms behind this pleiotropic syndrome may provide insights into more common forms of ataxia, myopathy, and neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare, dominantly inherited tumor predisposition syndrome characterized by benign cutaneous and uterine (ULM) leiomyomas, and sometimes renal cell cancer (RCC). A few cases of uterine leiomyosarcoma (ULMS) have also been reported. Mutations in a nuclear gene encoding fumarate hydratase (FH), an enzyme of the mitochondrial tricarboxylic acid cycle (TCA cycle), underlie HLRCC. As a recessive condition, germline mutations in FH predispose to a neurological defect, FH deficiency (FHD). Hereditary paragangliomatosis (HPGL) is a dominant disorder associated with paragangliomas and pheochromocytomas. Inherited mutations in three genes encoding subunits of succinate dehydrogenase (SDH), also a TCA cycle enzyme, predispose to HPGL. Both FH and SDH seem to act as tumor suppressors. One of the consequences of the TCA cycle defect is abnormal activation of HIF1 pathway ( pseudohypoxia ) in the HLRCC and HPGL tumors. HIF1 drives transcription of genes encoding e.g. angiogenetic factors which can facilitate tumor growth. Recently hypoxia/HIF1 has been suggested to be one of the causes of genetic instability as well. One of the aims of this study was to broaden the clinical definers of HLRCC. To determine the cancer risk and to identify possible novel tumor types associated with FH mutations eight Finnish HLRCC/FHD families were extensively evaluated. The extension of the pedigrees and the Finnish Cancer Registry based tumor search yielded genealogical and cancer data of altogether 868 individuals. The standardized incidence ratio-based comparison of HLRCC/FHD family members with general Finnish population revealed 6.5-fold risk for RCC. Moreover, risk for ULMS was highly increased. However, according to the recent and more stringent diagnosis criteria of ULMS many of the HLRCC uterine tumors previously considered malignant are at present diagnosed as atypical or proliferative ULMs (with a low risk of recurrence). Thus, the formation of ULMS (as presently defined) in HLRCC appears to be uncommon. Though increased incidence was not observed, interestingly the genetic analyses suggested possible association of breast and bladder cancer with loss of FH. Moreover, cancer cases were exceptionally detected in an FHD family. Another clinical finding was the conventional (clear cell) type RCC of a young Spanish HLRCC patient. Conventional RCC is distinct from the types previously observed in this syndrome but according to these results, FH mutation may underlie some of young conventional cancer cases. Secondly, the molecular pathway from defective TCA cycle to tumor formation was intended to clarify. Since HLRCC and HPGL tumors display abnormally activated HIF1, the hypothesis on the link between HIF1/hypoxia and genetic instability was of interest to study in HLRCC and HPGL tumor material. HIF1α (a subunit of HIF1) stabilization was confirmed in the majority of the specimens. However, no repression of MSH2, a protein of DNA mismatch repair system, or microsatellite instability (MSI), an indicator of genetic instability, was observed. Accordingly, increased instability seems not to play a role in the tumorigenesis of pseudohypoxic TCA cycle-deficient tumors. Additionally, to study the putative alternative functions of FH, a recently identified alternative FH transcript (FHv) was characterized. FHv was found to contain instead of exon 1, an alternative exon 1b. Differential subcellular distribution, lack of FH enzyme activity, low mRNA expression compared to FH, and induction by cellular stress suggest FHv to have a role distinct from FH, for example in apoptosis or survival. However, the physiological significance of FHv requires further elucidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenia is a severe mental disorder affecting 0.4-1% of the population worldwide. It is characterized by impairments in the perception of reality and by significant social or occupational dysfunction. The disorder is one of the major contributors to the global burden of diseases. Studies of twins, families, and adopted children point to strong genetic components for schizophrenia, but environmental factors also play a role in the pathogenesis of disease. Molecular genetic studies have identified several potential positional candidate genes. The strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1), but studies lack impressive consistency in the precise genetic regions and alleles implicated. We have studied the role of three potential candidate genes by genotyping 28 single nucleotide polymorphisms in the DNTBP1, NRG1, and AKT1 genes in a large schizophrenia family sample consisting of 441 families with 865 affected individuals from Finland. Our results do not support a major role for these genes in the pathogenesis of schizophrenia in Finland. We have previously identified a region on chromosome 5q21-34 as a susceptibility locus for schizophrenia in a Finnish family sample. Recently, two studies reported association between the γ-aminobutyric acid type A receptor cluster of genes in this region and one study showed suggestive evidence for association with another regional gene encoding clathrin interactor 1 (CLINT1, also called Epsin 4 and ENTH). To further address the significance of these genes under the linkage peak in the Finnish families, we genotyped SNPs of these genes, and observed statistically significant association of variants between GABRG2 and schizophrenia. Furthermore, these variants also seem to affect the functioning of the working memory. Fetal events and obstetric complications are associated with schizophrenia. Rh incompatibility has been implicated as a risk factor for schizophrenia in several epidemiological studies. We conducted a family-based candidate-gene study that assessed the role of maternal-fetal genotype incompatibility at the RhD locus in schizophrenia. There was significant evidence for an RhD maternal-fetal genotype incompatibility, and the risk ratio was estimated at 2.3. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia. In conclusion, in this thesis we found evidence that one GABA receptor subunit, GABRG2, is significantly associated with schizophrenia. Furthermore, it also seems to affect to the functioning of the working memory. In addition, an RhD maternal-fetal genotype incompatibility increases the risk of schizophrenia by two-fold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) are characterized by a high risk and early onset of colorectal cancer (CRC). HNPCC is due to a germline mutation in one of the following MMR genes: MLH1, MSH2, MSH6 and PMS2. A majority of FAP and attenuated FAP (AFAP) cases are due to germline mutations of APC, causing the development of multiple colorectal polyps. To date, over 450 MMR gene mutations and over 800 APC mutations have been identified. Most of these mutations lead to a truncated protein, easily detected by conventional mutation detection methods. However, in about 30% of HNPCC and FAP, and about 90% of AFAP families, mutations remain unknown. We aimed to clarify the genetic basis and genotype-phenotype correlation of mutation negative HNPCC and FAP/AFAP families by advanced mutation detection methods designed to detect large genomic rearrangements, mRNA and protein expression alterations, promoter mutations, phenotype linked haplotypes, and tumoral loss of heterozygosity. We also aimed to estimate the frequency of HNPCC in Uruguayan CRC patients. Our expression based analysis of mutation negative HNPCC divided these families into two categories: 1) 42% of families linked to the MMR genes with a phenotype resembling that of mutation positive, and 2) 58% of families likely to be associated with other susceptibility genes. Unbalanced mRNA expression of MLH1 was observed in two families. Further studies revealed that a MLH1 nonsense mutation, R100X was associated with aberrant splicing of exons not related to the mutation and an MLH1 deletion (AGAA) at nucleotide 210 was associated with multiple exon skipping, without an overall increase in the frequency of splice events. APC mutation negative FAP/AFAP families were divided into four groups according to the genetic basis of their predisposition. Four (14%) families displayed a constitutional deletion of APC with profuse polyposis, early age of onset and frequent extracolonic manifestations. Aberrant mRNA expression of one allele was observed in seven (24%) families with later onset and less frequent extracolonic manifestations. In 15 (52%) families the involvement of APC could neither be confirmed nor excluded. In three (10%) of the families a germline mutation was detected in genes other than APC: AXIN2 in one family, and MYH in two families. The families with undefined genetic basis and especially those with AXIN2 or MYH mutations frequently displayed AFAP or atypical polyposis. Of the Uruguayan CRC patients, 2.6% (12/461) fulfilled the diagnostic criteria for HNPCC and 5.6% (26/461) were associated with increased risk of cancer. Unexpectedly low frequency of molecularly defined HNPCC cases may suggest a different genetic profile in the Uruguayan population and the involvement of novel susceptibility genes. Accurate genetic and clinical characterization of families with hereditary colorectal cancers, and the definition of the genetic basis of "mutation negative" families in particular, facilitate proper clinical management of such families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is the third most common cancer in Finland. Of all CRC tumors, 15% display microsatellite-instability (MSI) caused by defective cellular mismatch repair. Cells displaying MSI accumulate a high number of mutations genome-wide, especially in short repeat areas, microsatellites. When targeting genes essential for cell growth or death, MSI can promote tumorigenesis. In non-coding areas, microsatellite mutations are generally considered as passenger events. Since the discovery of MSI and its linkage to cancer, more that 200 genes have been investigated for a role in MSI tumorigenesis. Although various criteria have been suggested for MSI target gene identification, the challenge has been to distinguish driver mutations from passenger mutations. This study aimed to clarify these key issues in the research field of MSI cancer. Prior to this, background mutation rate in MSI cancer has not been studied in a large-scale. We investigated the background mutation rate in MSI CRC by analyzing the spectrum of microsatellite mutations in non-coding areas. First, semenogelin I was studied for a possible role in MSI carcinogenesis. The intronic T9 repeat of semenogelin I was frequently mutated but no evidence for selection during tumorigenesis was obtained. Second, a sequencing approach was utilized to evaluate the general background mutation rate in MSI CRC. Both intronic and intergenic repeats harbored extremely high mutation rates of ≤ 87% and intergenic repeats were more unstable than the intronic repeats. As mutation rates of presumably neutral microsatellites can be high in MSI CRC in the absence of apparent selection pressure, high mutation frequency alone is not sufficient evidence for identification of driver MSI target genes. Next, an unbiased approach was designed to identify the mutatome of MSI CRC. By combining expression array data and a database search we identified novel genes possibly related to MSI CRC carcinogenesis. One of the genes was studied further. In the functional analysis this gene was observed to cause an abnormal cancer-prone cellular phenotype, possibly through altered responses to DNA damage. In our recent study, smooth muscle myosin heavy chain 11 (MYH11) was identified as a novel MSI CRC gene. Additionally, MYH11 has a well established role in acute myeloid leukemia (AML) through an oncogenic fusion protein CBFB-MYH11. We investigated further the role of MYH11 in AML by sequencing. Three novel missense variants of MYH11 were identified. None of the variants were present in the population-based control material. One of the identified variants, V71A, lies in the N-terminal SH3-like domain of MYH11 of unknown function. The other two variants, K1059E and R1792Q are located in the coil-coiled myosin rod essential for the regulation and filament formation of MYH11. The variant K1059E lies in the close proximity of the K1044N that has been functionally assessed in our earlier work of CRC and has been reported to cause total loss of MYH11 protein regulation. As the functional significance of the three novel variants examined in this work remains unknown, future studies should clarify the further role of MYH11 in AML leukaemogenesis and in other malignancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the genes predisposing to highly penetrant colorectal cancer (CRC) syndromes, including hereditary non-polyposis colorectal cancer (MLH1, MSH2, MSH6, PMS2), familial adenomatous polyposis (APC), Peutz-Jeghers syndrome (LKB1), juvenile polyposis (SMAD4, BMPR1A), MYH-associated polyposis (MYH), and Cowden syndrome (PTEN) have already been discovered. Identification of these genes has allowed a more precise classification of the hereditary CRC syndromes and provided a means for predictive genetic testing and surveillance. Some of the genes are also involved in sporadic cancer forms, and therefore the investigation of the rare CRC syndromes has been a breakthrough for general cancer research. Despite the accumulating knowledge on hereditary cancer syndromes, a significant number of familial CRCs remain molecularly unexplained after genetic testing, reflecting the possibility of other predisposing genes or existence of novel syndromes. Moreover, genetic variants conferring low-penetrance risk are still largely unknown. In this study, we examined the role of some new high- and low-penetrance alleles on CRC predisposition. We identified disease causing MYH mutations in a subset (9%) of patients with APC and AXIN2 mutation negative adenomatous polyposis. Due to differences in the pattern of inheritance and clinical manifestation, screening for mutations in MYH is beneficial in view of genetic counselling and surveillance. A novel functionally deficient MYH founder mutation A459D was identified in the Finnish population, and this finding had immediate clinical implications for genetic counselling of at risk families. Many patients with hamartomatous polyposis remain without molecular diagnosis due to atypical phenotypes. We therefore sought to classify 49 patients with unexplained hamartomatous or hyperplastic/mixed polyposis by extensive molecular analyses of PTEN, LKB1, BMPR1A, SMAD4, ENG, BRAF, MYH, and BHD along with revision of polyp histology. Mutations were identified in 11/49 (22%) of the patients. In 6 cases the molecular diagnosis was re-classified guiding surveillance and decisions for prophylactic surgery. Re-evaluation of polyp histology with subsequent more accurate selection of candidate gene analyses is beneficial and can be recommended for patients with unexplained polyposis. Furthermore, germline mutations in ENG underlying juvenile polyposis were described for the first time, characterizing a possible novel genetically defined form of hereditary CRC. Association analyses on two putative low-penetrance alleles, NOD2 3020insC and MDM2 SNP309 were performed in a population-based series of 1042 Finnish CRC patients and in cancer-free controls. In contrast to previous results, NOD2 3020insC did not associate with CRC or age at disease onset in the Finnish population. These data suggest that NOD2 3020insC alone might not be sufficient for CRC predisposition. MDM2 SNP309 was as common in the CRC cohort as in the healthy controls. Interesting trends, however, were observed, which after correction for multiple testing did not reach statistical significance. SNP309 was more common in female CRC patients and a trend towards an earlier age at disease onset was observed in women with SNP309. Subsequent studies have supported this observation and SNP309 could affect gender- or hormone-related tumorigenesis. Finally, a large-scale unbiased effort was designed to characterize the complete mutatome of CRC with microsatellite instability (MSI). Using an approach combining expression microarray and genome database searches, we were able to identify putative MSI target genes. Further characterization of one of the genes suggested that it might play a role also in microsatellite stable CRC and Peutz-Jeghers syndrome pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positional cloning has enabled hypothesis-free, genome-wide scans for genetic factors contributing to disorders or traits. Traditionally linkage analysis has been used to identify regions of interest, followed by meticulous fine mapping and candidate gene screening using association methods and finally sequencing of regions of interest. More recently, genome-wide association analysis has enabled a more direct approach to identify specific genetic variants explaining a part of the variance of the phenotype of interest. Autism spectrum disorders (ASDs) are a group of childhood onset neuropsychiatric disorders with shared core symptoms but varying severity. Although a strong genetic component has been established in ASDs, genetic susceptibility factors have largely eluded characterization. Here, we have utilized modern molecular genetic methods combined with the advantages provided by the special population structure in Finland to identify genetic risk factors for ASDs. The results of this study show that numerous genetic risk factors exist for ASDs even within a population isolate. Stratification based on clinical phenotype resulted in encouraging results, as previously identified linkage to 3p14-p24 was replicated in an independent family set of families with Asperger syndrome, but no other ASDs. Fine-mapping of the previously identified linkage peak for ASDs at 3q25-q27 revealed association between autism and a subunit of the 5-hydroxytryptamine receptor 3C (HTR3C). We also used dense, genome-wide single nucleotide polymorphism (SNP) data to characterize the population structure of Finns. We observed significant population substructure which correlates with the known history of multiple consecutive bottle-necks experienced by the Finnish population. We used this information to ascertain a genetically homogenous subset of autism families to identify possible rare, enriched risk variants using genome-wide SNP data. No rare enriched genetic risk factors were identified in this dataset, although a subset of families could be genealogically linked to form two extended pedigrees. The lack of founder mutations in this isolated population suggests that the majority of genetic risk factors are rare, de novo mutations unique to individual nuclear families. The results of this study are consistent with others in the field. The underlying genetic architecture for this group of disorders appears highly heterogeneous, with common variants accounting for only a subset of genetic risk. The majority of identified risk factors have turned out to be exceedingly rare, and only explain a subset of the genetic risk in the general population in spite of their high penetrance within individual families. The results of this study, together with other results obtained in this field, indicate that family specific linkage, homozygosity mapping and resequencing efforts are needed to identify these rare genetic risk factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along with the increased life span of individuals, the burden of old age-associated diseases has inevitably increased. Alzheimer s disease (AD), probably the most well known geriatric disease, belongs to the old age-associated amyloid diseases. The purpose of this study was to investigate the frequency, genetic and health-associated risk factors, mutual association, and amyloid proteins in two old age-associated amyloid disorders senile systemic amyloidosis (SSA) and cerebral amyloid angiopathy (CAA) as part of the prospective population-based Vantaa 85+ autopsy study on a Finnish population aged 85 years or more (Studies I-III), completed with a case report on a patient with advanced AGel amyloidosis (Study IV). The numbers of patients investigated in the studies (I-III) were 256, 74, and 63, respectively. The diagnosis and grading of amyloid were based upon histological examination of tissue samples obtained post mortem and stained with Congo red. The amyloid fibril and associated proteins were characterized by immunohistochemical staining methods. The genotype frequencies of 20 polymorphisms in 9 genes and information on health-associated risk factors in subjects with and without SSA and CAA were compared. In a Finnish population ≥ 95 years of age, SSA and CAA occurred in 36% and 49% of the subjects, respectively. In total, two-thirds of these very elderly individuals had SSA, CAA, or both. However, in only 14% of the population these two conditions co-occurred. In subjects 85 years or older, the prevalence of SSA was 25%. In this population, SSA was associated with age at the time of death (p=0.002), myocardial infarctions (MIs; p=0.004), the G/G (Val/Val) genotype of the exon 24 polymorphism in the alpha2-macroglobulin (α2M) gene (p=0.042) and with the H2 haplotype of the tau gene (p=0.016). In contrast, the presence of CAA was strongly associated with APOE e4 (p=0.0003), with histopathological AD (p=0.0005), and with clinical dementia (p=0.01) in both e4+ (p=0.02) and e4- (p=0.06) individuals. Apart from demonstrating the amyloid fibril proteins, complement proteins 3d (C3d) and 9 (C9) were detected in the amyloid deposits of CAA and AGel amyloidosis, and α2M protein was found in fibrous scar tissue close to SSA. In conclusion, this first population based study on SSA shows that both SSA and CAA are common in very elderly individuals. Old age, MIs, the exon 24 polymorphism of the α2M gene, and H1/H2 polymorphism of the tau gene associate with SSA while clinical dementia and APOE ε4 genotype associate with CAA. The high prevalence of CAA, combined with its association with clinical dementia independent of APOE genotype, neuropathological AD, or SSA, also highlights its clinical significance in the very aged, among which the serious end stage complications of CAA, namely multiple infarctions and hemorrhages, are rare. The report on a patient having advanced AGel amyloidosis added knowledge on the disease and showed that this generally benign condition occasionally may lead to death. Further studies are warranted to confirm the findings in other populations. Also, the role of α2M and tau in the pathogenesis of SSA and the involvement of complement in the process of amyloid beta (Aβ) protein elimination from the brain remain to be clarified. Finally, the high prevalence of SSA in the elderly raises the need for prospective clinical studies to define its clinical significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We described the patterns and extent of microsatellite DNA variation in historical and present-day Atlantic salmon (Salmo salar L.) stocks in the Baltic Sea and neighbouring areas, and in European whitefish (Coregonus lavaretus) ecotypes, populations and run-timing types in Finland. Moreover, the amount and pattern of genetic diversity in historical salmon populations before human impact were described, and the proportion of diversity maintained in the present hatchery stocks evaluated. Salmon populations in the Baltic Sea were, on average, significantly less variable than eastern Atlantic populations, and the diversity of landlocked populations (Lakes Vänern, Saimaa, Onega and Ladoga) was in turn significantly lower than that of anadromous salmon populations in the Baltic Sea populations. Within the Baltic Sea, the anadromous populations of Atlantic salmon formed three clear groups, corresponding to the northern (Gulf of Bothnia), eastern (Gulf of Finland and eastern Baltic Main Basin) and southern (western Baltic Main Basin) regions. Based on microsatellite data, three salmon population groups in the Baltic Sea were considered potentially different colonization lineages. In short- and long-term breeding programmes of Atlantic salmon, the average observed rate of loss of alleles was 4.9% and 2.0% per generation and the average rate of loss of heterozygosity was 1.4% and 1% per generation, respectively. When comparing the genetic parameters of stocks before and after hatchery breeding of several successive generations (Rivers Iijoki and Oulujoki), statistically significant changes in allele frequencies were common, while large wild stock in the Teno River has remained temporally very stable over 56 years. Despite the observed losses of genetic diversity in broodstock breeding, a large proportion of the genetic resources of the extirpated stocks are still conserved in the broodstocks. Genetic differentiation among European whitefish ecotypes was generally low, thus giving support to the hypothesis of one native European whitefish species in Fennoscandia. Among the ecotypes, the northern, large sparsely rakered, bottom-dwelling whitefish was the most unique. The known genetic differences in quantitative traits have thus either developed independently of potential phylogenetic lineages, or the lineages have mixed and the quantitative traits of the ecotypes, like gill-raker number, have later changed according to environment and selection pressures. Overall, genetic distances between the anadromous whitefish populations along the Finnish coast, especially in the Bothnian Bay area, were small. Wild whitefish populations studied had slightly higher allelic diversity than hatchery-reared populations in corresponding rivers.