49 resultados para four-component decomposition
Resumo:
Research on unit cohesion has shown positive correlations between cohesion and valued outcomes such as strong performance, reduced stress, less indiscipline, and high re-enlistment intentions. However, the correlations have varied in strength and significance. The purpose of this study is to show that taking into consideration the multi-component nature of cohesion and relating the most applicable components to specific outcomes could resolve much of the inconsistency. Unit cohesion is understood as a process of social integration among members of a primary group with its leaders, and with the larger secondary groups of which they are a part. Correspondingly, included in the framework are four bonding components: horizontal (peer) and vertical (subordinate and leader) and organizational and institutional, respectively. The data were collected as part of a larger research project on cohesion, leadership, and personal adjustment to the military. In all, 1,534 conscripts responded to four questionnaires during their service in 2001-2002. In addition, sociometric questionnaires were given to 537 group members in 47 squads toward the end of their service. The results showed that platoons with strong primary-group cohesion differed from other platoons in terms of performance, training quality, secondary-group experiences, and attitudes toward refresher training. On the sociometric level it was found that soldiers who were chosen as friends by others were more likely to have higher expected performance, better performance ratings, more positive attitudes toward military service, higher levels of well-being during conscript service, and fewer exemptions from duty during it. On the group level, the selection of the respondents own group leader rather than naming a leader from outside (i.e., leader bonding) had a bearing not only on cohesion and performance, but also on the social, attitudinal, and behavioral criteria. Overall, the aim of the study was to contribute to the research on cohesion by introducing a model that takes into account the primary foci of bonding and their impact. The results imply that primary-group and secondary-group bonding processes are equally influential in explaining individual and group performance, whereas the secondary-group bonding components are far superior in explaining career intentions, personal growth, avoidance of duty, and attitudes toward refresher training and national defense. This should be considered in the planning and conducting of training. The main conclusion is that the different types of cohesion components have a unique, positive, significant, but varying impact on a wide range of criteria, confirming the need to match the components with the specific criteria.
Resumo:
"Litter quality and environmental effects on Scots pine (Pinus sylvestris L.) fine woody debris (FWD) decomposition were examined in three forestry-drained peatlands representing different site types along a climatic gradient from the north boreal (Northern Finland) to south (Southern Finland) and hemiboreal (Central Estonia) conditions. Decomposition (percent mass loss) of FWD with diameter <= 10 mm (twigs) and FWD with diameter > 10 mm (branches) was measured using the litter bag method over 1-4-year periods. Overall, decomposition rates increased from north to south, the rate constants (k values) varying from 0.128 to 0.188 year(-1) and from 0.066 to 0.127 year(-1) for twigs and branches, respectively. On average, twigs had lost 34%, 19% and 19%, and branches 25%, 17% and 11% of their initial mass after 2 years of decomposition at the hemiboreal, south boreal and north boreal sites, respectively. After 4 years at the south boreal site the values were 48% for twigs and 42% for branches. Based on earlier studies, we suggest that the decomposition rates that we determined may be used for estimating Scots pine FWD decomposition in the boreal zone, also in upland forests. Explanatory models accounted for 50.4% and 71.2% of the total variation in FWD decomposition rates when the first two and all years were considered, respectively. The variables most related to FWD decomposition included the initial ash, water extractives and Klason lignin content of litter, and cumulative site precipitation minus potential evapotranspiration. Simulations of inputs and decomposition of Scots pine FWD and needle litter in south boreal conditions over a 60-year period showed that 72 g m(-2) of organic matter from FWD vs. 365 g m(-2) from needles accumulated in the forest floor. The annual inputs varied from 5.7 to 15.6 g m(-2) and from 92 to 152 g m(-2) for FWD and needles, respectively. Each thinning caused an increase in FWD inputs, Up to 510 g m(-2), while the needle inputs did not change dramatically. Because the annual FWD inputs were lowered following the thinnings, the overall effect of thinnings on C accumulation from FWD was slightly negative. The contribution of FWD to soil C accumulation, relative to needle litter, seems to be rather minor in boreal Scots pine forests. (C) 2008 Elsevier B.V. All rights reserved."
Resumo:
The study of soil microbiota and their activities is central to the understanding of many ecosystem processes such as decomposition and nutrient cycling. The collection of microbiological data from soils generally involves several sequential steps of sampling, pretreatment and laboratory measurements. The reliability of results is dependent on reliable methods in every step. The aim of this thesis was to critically evaluate some central methods and procedures used in soil microbiological studies in order to increase our understanding of the factors that affect the measurement results and to provide guidance and new approaches for the design of experiments. The thesis focuses on four major themes: 1) soil microbiological heterogeneity and sampling, 2) storage of soil samples, 3) DNA extraction from soil, and 4) quantification of specific microbial groups by the most-probable-number (MPN) procedure. Soil heterogeneity and sampling are discussed as a single theme because knowledge on spatial (horizontal and vertical) and temporal variation is crucial when designing sampling procedures. Comparison of adjacent forest, meadow and cropped field plots showed that land use has a strong impact on the degree of horizontal variation of soil enzyme activities and bacterial community structure. However, regardless of the land use, the variation of microbiological characteristics appeared not to have predictable spatial structure at 0.5-10 m. Temporal and soil depth-related patterns were studied in relation to plant growth in cropped soil. The results showed that most enzyme activities and microbial biomass have a clear decreasing trend in the top 40 cm soil profile and a temporal pattern during the growing season. A new procedure for sampling of soil microbiological characteristics based on stratified sampling and pre-characterisation of samples was developed. A practical example demonstrated the potential of the new procedure to reduce the analysis efforts involved in laborious microbiological measurements without loss of precision. The investigation of storage of soil samples revealed that freezing (-20 °C) of small sample aliquots retains the activity of hydrolytic enzymes and the structure of the bacterial community in different soil matrices relatively well whereas air-drying cannot be recommended as a storage method for soil microbiological properties due to large reductions in activity. Freezing below -70 °C was the preferred method of storage for samples with high organic matter content. Comparison of different direct DNA extraction methods showed that the cell lysis treatment has a strong impact on the molecular size of DNA obtained and on the bacterial community structure detected. An improved MPN method for the enumeration of soil naphthalene degraders was introduced as an alternative to more complex MPN protocols or the DNA-based quantification approach. The main advantage of the new method is the simple protocol and the possibility to analyse a large number of samples and replicates simultaneously.
Resumo:
Eddy covariance (EC)-flux measurement technique is based on measurement of turbulent motions of air with accurate and fast measurement devices. For instance, in order to measure methane flux a fast methane gas analyser is needed which measures methane concentration at least ten times in a second in addition to a sonic anemometer, which measures the three wind components with the same sampling interval. Previously measurement of methane flux was almost impossible to carry out with EC-technique due to lack of fast enough gas analysers. However during the last decade new instruments have been developed and thus methane EC-flux measurements have become more common. Performance of four methane gas analysers suitable for eddy covariance measurements are assessed in this thesis. The assessment and comparison was performed by analysing EC-data obtained during summer 2010 (1.4.-26.10.) at Siikaneva fen. The four participating methane gas analysers are TGA-100A (Campbell Scientific Inc., USA), RMT-200 (Los Gatos Research, USA), G1301-f (Picarro Inc., USA) and Prototype-7700 (LI-COR Biosciences, USA). RMT-200 functioned most reliably throughout the measurement campaign and the corresponding methane flux data had the smallest random error. In addition, methane fluxes calculated from data obtained from G1301-f and RMT-200 agree remarkably well throughout the measurement campaign. The calculated cospectra and power spectra agree well with corresponding temperature spectra. Prototype-7700 functioned only slightly over one month in the beginning of the measurement campaign and thus its accuracy and long-term performance is difficult to assess.