50 resultados para Oral pathology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present cross-sectional study examined the effect of smoking on oral health in a birth cohort of 15 to 16-year-old Finnish adolescents. The hypothesis was that oral health parameters were poorer among smoking than non-smoking subjects and that a tobacco intervention program could be effective among the adolescents. The study was conducted in the Kotka Health Center, Kotka, Finland. Altogether 501 out of 545 subjects (15- to 16-year-old boys [n = 258] and girls [n = 243]) were clinically examined in 2004 and 2005. The sample frame was a birth cohort of all subjects in 1989 and 1990, living in Kotka. A structured questionnaire was also filled in by the participants to record their general health and health habits, such as smoking, tooth brushing, and medication used. The participants were classified into nonsmokers, current smokers, and former smokers. Subgingival pooled plaque samples were taken and stimulated salivary samples were also collected. The subjects were asked from which of seven professional groups (doctors, school nurses, dental nurses, general nurses, dentists, teachers and media professionals) they would prefer to receive information about tobacco. The two most popular groups they picked up were dentists and school nurses. Current smokers (n=127) were then randomly assigned into three groups: the dentist group (n =44), the school-nurse group (n =42), and the control group (n =39). The intervention was based on a national recommendation of evidence based guidelines by The Finnish Medical Society Duodecim ( 5A counseling system). Two months after the intervention, a second questionnaire was sent to the smokers in the intervention groups. Smoking cessation, smoking quantity per week, and self-rated addiction for smoking (SRA) were recorded. The results were analyzed using the R-statistical program. The results showed that 15% of the subjects had periodontitis. Smokers (25%) had more periodontitis than non-smokers (66%) (p < 0.001). Smoking boys (24%) also had more caries lesions than non-smokers (69%) (p < 0.001), and they brushed their teeth less frequently than non-smokers. Smoking significantly impaired periodontal health of the subjects, even when the confounding effects of plaque and tooth brushing were adjusted. Smoking pack-years, intensified the effects of smoking. Periodontal bacteria Prevotella nigrescens, Prevotella intermedia, Tannerella forsythia and Treponema denticola were more frequently detected among the smokers than non-smokers, especially among smoking girls. Smoking significantly decreased the values of both the salivary periodontal biomarkers MMP-8 (p=0.04) and PMN elastase (p=0.02) in boys. The effect was strengthened by pack years of smoking (MMP-8 p=0.04; elastase p0.01). Of those who participated in the intervention, 19 % quit smoking. The key factors associated with smoking cessation were best friend`s influence, nicotine dependence and diurnal type. When the best friend was not a smoker, the risk ratio (RR) of quit smoking after the intervention was 7.0 (Cl 95% 4.6 10.7). Of the diurnal types, the morning people seemed to be more likely to quit (RR 2.2 [Cl 95% 1.4 3.6]). Nicotine dependence also elicited an opposite effect: those who scored between 3 and 5 dependence scores were less likely to quit. In conclusion, smoking appears to be a major etiological risk factor for oral health. However, the early signs of periodontal disease were mild in the subjects studied. Based on the opinions of the adolescent s, dental professionals may have a key position in their smoking cessation. The harmful effects of smoking on oral health could be used in counselling. Best friend`s influence, nicotine dependence and diurnal type, all factors associated with smoking cessation, should be taken more carefully into account in the prevention programs for adolescents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) is a worldwide health problem, with adverse outcomes of cardiovascular disease and premature death. The ageing of populations along with the growing prevalence of chronic diseases such as diabetes and hypertension is leading to worldwide increase in the number of CKD patients. It has become evident that inflammation plays an important role in the pathogenesis of atherosclerosis complications. CKD patients also have an increased risk of atherosclerosis complications (including myocardial infarction, sudden death to cardiac arrhythmia, cerebrovascular accidents, and peripheral vascular disease). In line with this, oral and dental problems can be an important source of systemic inflammation. A decline in oral health may potentially act as an early marker of systemic disease progression. This series of studies examined oral health of CKD patients from predialysis, to dialysis and kidney transplantation in a 10-year follow-up study and in a cross-sectional study of predialysis CKD patients. Patients had clinical and radiographic oral and dental examination, resting and stimulated saliva flow rates were measured, whilst the biochemical and microbiological composition of saliva was analyzed. Lifestyle and oral symptoms were recorded using a questionnaire, and blood parameters were collected from the hospital records. The hypothesis was that the oral health status, symptoms, sensations, salivary flow rates and salivary composition vary in different renal failure stages and depend on the etiology of the kidney disease. No statistically significant difference were seen in the longitudinal study in the clinical parameters. However, some saliva parameters after renal transplantation were significantly improved compared to levels at the predialysis stage. The urea concentration of saliva was high in all stages. The salivary and plasma urea concentrations followed a similar trend, showing the lowest values in kidney transplant patients. Levels of immunoglobulin (Ig) A, G and M all decreased significantly after kidney transplantation. Increased concentrations of IgA, IgG and IgM may reflect disintegration of the oral epithelium and are usually markers of poor general oral condition. In the cross-sectional investigation of predialysis CKD patients we compared oral health findings of diabetic nephropathy patients to those with other kidney disease than diabetes. The results showed eg. more dental caries and lower stimulated salivary flow rates in the diabetic patients. HbA1C values of the diabetic patients were significantly higher than those in the other kidney disease group. A statistically significant difference was observed in the number of drugs used daily in the diabetic nephropathy group than in the other kidney disease group. In the logistic regression analyses, age was the principal explanatory factor for high salivary total protein concentration, and for low unstimulated salivary flow. Poor dental health, severity of periodontal disease seemed to be an explanatory factor for high salivary albumin concentrations. Salivary urea levels were significantly linked with diabetic nephropathy and with serum urea concentrations. Contrary to our expectation, however, diabetic nephropathy did not seem to affect periodontal health more severely than the other kidney diseases. Although diabetes is known to associate with xerostomia and other oral symptoms, it did not seem to increase the prevalence of oral discomfort. In summary, this series of studies has provided new information regarding the oral health of CKD patients. As expected, the commencement of renal disease reflects in oral symptoms and signs. Diabetic nephropathy, in particular, appears to impart a requirement for special attention in the oral health care of patients suffering from this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bad breath or oral malodour can be related to gingival diseases, trimethylaminuria, various inflammation diseases of upper respiratory tract, foreign bodies in nasal cavity etc. Bad breath is usually, in 85 % to 95 % of cases, inflicted by gram negative anaerobic bacteria in tongue coating. These bacteria have a tendency of producing foul-smelling sulphur containing gases called volatile sulphur compounds or VSC. Main cause of bad breath is parodontitis or postnasal drip into posterior part of the tongue. Detecting bad breath is most efficiently done by organoleptic method. By skilled analyser the reason for oral malodour can be determined with great accuracy. For scientific study the most effective method is gas chromatography (GC) with flame photometric detector (FPD). With it almost every component of exhaled air can be detected both quantitative and qualitative. Effective chairside methods include portable sulphur monitors and saliva tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral cancer is the seventh most common cancer worldwide and its incidence is increasing. The most important risk factors for oral cancer are chronic alcohol consumption and tobacco smoking, up to 80 % of oral carcinomas are estimated to be caused by alcohol and tobacco. They both trigger an increased level of salivary acetaldehyde, during and after consumption, which is believed to lead to carcinogenesis. Acetaldehyde has multiple mutagenic features and it has recently been classified as a Group 1 carcinogen for humans by the International Agency for Research on Cancer. Acetaldehyde is metabolized from ethanol by microbes of oral microbiota. Some oral microbes possess alcohol dehydrogenase enzyme (ADH) activity, which is the main enzyme in acetaldehyde production. Many microbes are also capable of acetaldehyde production via alcohol fermentation from glucose. However, metabolism of ethanol into acetaldehyde leads to production of high levels of this carcinogen. Acetaldehyde is found in saliva during and after alcohol consumption. In fact, rather low ethanol concentrations (2-20mM) derived from blood to saliva are enough for microbial acetaldehyde production. The high acetaldehyde levels in saliva after alcohol challenge are explained by the lack of oral microbiota and mucosa to detoxify acetaldehyde by metabolizing it into acetate and acetyl coenzymeA. The aim of this thesis project was to specify the role of oral microbes in the in vitro production of acetaldehyde in the presence of ethanol. In addition, it was sought to establish whether microbial metabolism could also produce acetaldehyde from glucose. Furthermore, the potential of xylitol to inhibit ethanol metabolism and acetaldehyde production was explored. Isolates of oral microbes were used in the first three studies. Acetaldehyde production was analyzed after ethanol, glucose and fructose incubation with gas chromatography measurement. In studies I and III, the ADH enzyme activity of some microbes was measured by fluorescence. The effect of xylitol was analyzed by incubating microbes with ethanol and xylitol. The fourth study was made ex vivo and microbial samples obtained from different patient groups were analyzed. This work has demonstrated that isolates of oral microbiota are able to produce acetaldehyde in the presence of clinically relevant ethanol and glucose concentrations. Significant differences were found between microbial species and isolates from different patient groups. In particular, the ability of candidal isolates from APECED patients to produce significantly more acetaldehyde in glucose incubation compared to healthy and cancer patient isolates is an interesting observation. Moreover, xylitol was found to reduce their acetaldehyde production significantly. Significant ADH enzyme activity was found in the analyzed high acetaldehyde producing streptococci and candida isolates. In addition, xylitol was found to reduce the ADH enzyme activity of C. albicans. Some results from the ex vivo study were controversial, since acetaldehyde production did not correlate as expected with the amount of microbes in the samples. Nevertheless, the samples isolated from patients did produce significant amounts of acetaldehyde with a clinically relevant ethanol concentration.