63 resultados para OPTOELECTRONIC PROPERTIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large herbivores can influence plant and soil properties in grassland ecosystems, but especially for belowground biota and processes, the mechanisms that explain these effects are not fully understood. Here, we examine the capability of three grazing mechanisms-plant defoliation, dung and urine return, and physical presence of animals (causing trampling and excreta return in patches)-to explain grazing effects in Phleum pratense-Festuca pratensis dairy cow pasture in Finland. Comparison of control plots and plots grazed by cows showed that grazing maintained original plant-community structure, decreased shoot mass and root N and P concentrations, increased shoot N and P concentrations, and had an inconsistent effect on root mass. Among soil fauna, grazing increased the abundance of fungivorous nematodes and Aporrectodea earthworms and decreased the abundance of detritivorous enchytraeids and Lumbricus earthworms. Grazing also increased soil density and pH but did not affect average soil inorganic-N concentration. To reveal the mechanisms behind these effects, we analyzed results from mowed plots and plots that were both mowed and treated with a dung and urine mixture. This comparison revealed that grazing effects on plant attributes were almost entirely explained by defoliation, with only one partly explained by excreta return. Among belowground attributes, however, the mechanisms were more mixed, with effects explained by defoliation, patchy excreta return, and cow trampling. Average soil inorganic-N concentration was not affected by grazing because it was simultaneously decreased by defoliation and increased by cow presence. Presence of cows created great spatial heterogeneity in soil N availability and abundance of fungivorous nematodes. A greenhouse trial revealed a grazing-induced soil feedback on plant growth, which was explained by patchiness in N availability rather than changes in soil biota. Our results show that grazing effects on plant attributes can be satisfactorily predicted using the effects of defoliation, whereas those on soil fauna and soil N availability need understanding of other mechanisms as well. The results indicate that defoliation-induced changes in plant ecophysiology and the great spatial variation in N availability created by grazers are the two key mechanisms through which large herbivores can control grassland ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observation of the bottom, doubly-strange baryon Omega^-_b through the decay chain Omega^-_b -> J/psi Omega^-, where J/psi -> mu^+ mu^-, Omega^- -> Lambda K^-, and Lambda -> p pi^-, using 4.2 fb^{-1} of data from p\bar p collisions at sqrt{s}=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 * 10^{-8}, or 5.5 Gaussian standard deviations. The Omega^-_b mass is measured to be 6054.4 +/- 6.8 (stat.) +/- 0.9 (syst.) MeV/c^2. The lifetime of the Omega^-_b baryon is measured to be 1.13^{+0.53}_{-0.40}(stat.) +/- 0.02(syst.)$ ps. In addition, for the \Xi^-_b baryon we measure a mass of 5790.9 +/- 2.6(stat.) +/- 0.8(syst.) MeV/c^2 and a lifetime of 1.56^{+0.27}_{-0.25}(stat.) +/-0.02(syst.) ps. Under the assumption that the \Xi_b^- and \Omega_b^- are produced with similar kinematic distributions to the \Lambda^0_b baryon, we find sigma(Xi_b^-) B(Xi_b^- -> J/psi Xi^-)}/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) +/-0.012(syst.) and sigma(Omega_b^-) B(Omega_b^- -> J/psi Omega^-)/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) +/- 0.004(syst.) for baryons produced with transverse momentum in the range of 6-20 GeV/c.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study contributes to our knowledge of how information contained in financial statements is interpreted and priced by the stock market in two aspects. First, the empirical findings indicate that investors interpret some of the information contained in new financial statements in the context of the information of prior financial statements. Second, two central hypotheses offered in earlier literature to explain the significant connection between publicly available financial statement information and future abnormal returns, that the signals proxy for risk and that the information is priced with a delay, are evaluated utilizing a new methodology. It is found that the mentioned significant connection for some financial statement signals can be explained by that the signals proxy for risk and for other financial statement signals by that the information contained in the signals is priced with a delay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the study, the selected wood and fiber properties were investigated in terms of their occurrence and variation in wood, as well as their relevance from the perspective of thermomechanical pulping process and related end-products. It was concluded that the most important factors were the fiber dimensions, juvenile wood content, and in some cases, the content of heartwood being associated with extremely dry wood with low permeability in spruce. With respect to the above properties, the following three pulpwood assortments of which pulping potential was assumed to vary were formed: wood from regeneration cuttings, first-thinnings wood, and sawmill chips. In the experimental part of the study the average wood and fiber characteristics and their variation were determined for each raw material group prior to pulping. Subsequently, each assortment - equaling about 1500 m3 roundwood - was pulped separately for a 24 h period, at constant process conditions. The properties of obtained newsgrade thermomechanical pulps were then determined. Thermomechanical pulping (TMP) from sawmill chips had the highest proportion of long fibers, smallest proportion of fines, and had generally the coarsest and longest fibers. TMP from first-thinnings wood was just the opposite, whereas that from regeneration cuttings fell in between the above two extremes. High proportion of dry heartwood in wood originating from regeneration cuttings produced a slightly elevated shives content. However, no differences were found in pulp specific energy consumption. The obtained pulp tear index was clearly best in TMP made from sawmill chips and poorest in pulp from first-thinnings wood, which had generally inferior strength properties. No dramatical differences in any of the strength properties were found between pulp from sawmill residual wood and regeneration cuttings. Pulp optical properties were superior in TMP from first-thinnings. Unexpectedly, no noticeable differences, which could be explained with fiber morphology, were found in sheet density, bulk, air permeance or roughness between the three pulps. The most important wood quality factors in this study were the fiber length, fiber cross-sectional dimensions and percentage juvenile wood. Differences found in the quality of TMP manufactured from the above spruce assortments suggest that they could be segregated and pulped separately to obtain specific product characteristics, i.e., for instance tailor-made end-products, and to minimize unnecessary variation in the raw material quality, and hence, pulp quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objectives in this thesis were to isolate and identify the phenolic compounds in wild (Sorbus aucuparia) and cultivated rowanberries, European cranberries (Vaccinium microcarpon), lingonberries (Vaccinium vitis-idaea), and cloudberries (Rubus chamaemorus), as well as to investigate the antioxidant activity of phenolics occurring in berries in food oxidation models. In addition, the storage stability of cloudberry ellagitannin isolate was studied. In wild and cultivated rowanberries, the main phenolic compounds were chlorogenic acids and neochlorogenic acids with increasing anthocyanin content depending on the crossing partners. The proanthocyanidin contents of cranberries and lingonberries were investigated, revealing that the lingonberry contained more rare A-type dimers than the European cranberry. The liquid chromatography mass spectrometry (LC-MS) analysis of cloudberry ellagitannins showed that trimeric lambertianin C and sanguiin H-10 were the main ellagitannins. The berries, rich in different types of phenolic compounds including hydroxycinnamic acids, proanthocyanidins, and ellagitannins, showed antioxidant activity toward lipid oxidation in liposome and emulsion oxidation models. All the different rowanberry cultivars prevented lipid oxidation in the same way, in spite of the differences in their phenolic composition. In terms of liposomes, rowanberries were slightly more effective antioxidants than cranberry and lingonberry phenolics. Greater differences were found when comparing proanthocyanidin fractions. Proanthocyanidin dimers and trimers of both cranberries and lingonberries were most potent in inhibiting lipid oxidation. Antioxidant activities and antiradical capacities were also studied with hydroxycinnamic acid glycosides. The sinapic acid derivatives of the hydroxycinnamic acid glycosides were the most effective at preventing lipid oxidation in emulsions and liposomes and scavenging radicals in DPPH assay. In liposomes and emulsions, the formation of the secondary oxidation product, hexanal, was inhibited more than that of the primary oxidation product, conjugated diene hydroperoxides, by hydroxycinnamic acid derivatives. This indicates that they are principally chain-breaking antioxidants rather than metal chelators, although they possess chelating activity as well. The storage stability test of cloudberry ellagitannins was performed by storing ellagitannin isolate and ellagitannins encapsulated with maltodextrin at different relative vapor pressures. The storage stability was enhanced by the encapsulation when higher molecular weight maltodextrin was used. The best preservation was achieved when the capsules were stored at 0 or 33% relative vapor pressures. In addition, the antioxidant activities of encapsulated cloudberry extracts were followed during the storage period. Different storage conditions did not alter the antioxidant activity, even though changes in the ellagitannin contents were seen. The current results may be of use in improving the oxidative stability of food products by using berries as natural antioxidants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toeplitz operators are among the most important classes of concrete operators with applications to several branches of pure and applied mathematics. This doctoral thesis deals with Toeplitz operators on analytic Bergman, Bloch and Fock spaces. Usually, a Toeplitz operator is a composition of multiplication by a function and a suitable projection. The present work deals with generalizing the notion to the case where the function is replaced by a distributional symbol. Fredholm theory for Toeplitz operators with matrix-valued symbols is also considered. The subject of this thesis belongs to the areas of complex analysis, functional analysis and operator theory. This work contains five research articles. The articles one, three and four deal with finding suitable distributional classes in Bergman, Fock and Bloch spaces, respectively. In each case the symbol class to be considered turns out to be a certain weighted Sobolev-type space of distributions. The Bergman space setting is the most straightforward. When dealing with Fock spaces, some difficulties arise due to unboundedness of the complex plane and the properties of the Gaussian measure in the definition. In the Bloch-type spaces an additional logarithmic weight must be introduced. Sufficient conditions for boundedness and compactness are derived. The article two contains a portion showing that under additional assumptions, the condition for Bergman spaces is also necessary. The fifth article deals with Fredholm theory for Toeplitz operators having matrix-valued symbols. The essential spectra and index theorems are obtained with the help of Hardy space factorization and the Berezin transform, for instance. The article two also has a part dealing with matrix-valued symbols in a non-reflexive Bergman space, in which case a condition on the oscillation of the symbol (a logarithmic VMO-condition) must be added.