77 resultados para Molecular genetic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital missing of teeth, tooth agenesis or hypodontia, is one of the most common developmental anomalies in man. The common forms in which one or a few teeth are absent, may cause occlusal or cosmetic harm, while severe forms which are relatively rare always require clinical attention to support and maintain the dental function. Observation of tooth agenesis is also important for diagnosis of malformation syndromes. Some external factors may cause developmental defects and agenesis in dentition. However, the role of inheritance in the etiology of tooth agenesis is well established by twin and family studies. Studies on familial tooth agenesis as well as mouse null mutants have also identified several genetic factors. However, these explain syndromic or rare dominant forms of tooth agenesis, whereas the genes and defects responsible for the majority of cases of tooth agenesis, especially the common and less severe forms, are largely unknown. In this study it was shown, that a dominant nonsense mutation in PAX9 was responsible for severe tooth agenesis (oligodontia) in a Finnish family. In a study of tooth agenesis associated with Wolf-Hirschhorn syndrome, it was shown that severe tooth agenesis was present if the causative deletion in 4p spanned the MSX1 locus. It was concluded that severe tooth agenesis was caused by haploinsufficiency of these transcription factors. A summary of the phenotypes associated with known defects in MSX1 and PAX9 showed that, despite similarities, they were significantly different, suggesting that the genes, in addition to known interactions, also have independent roles during the development of human dentition. The original aim of this work was to identify gene defects that underlie the common incisor and premolar hypodontia. After excluding several candidate genes, a genome-wide search was conducted in seven Finnish families in which this phenotype was inherited in an autosomal dominant manner. A promising locus for second premolar agenesis was identified in chromosome 18 in one family and this finding was supported by results from other families. The results also implied the existence of other loci both for second premolar agenesis and for incisor agenesis. On the other hand the results did not lend support for comprehensive involvement of the most obvious candidate genes in the etiology of incisor and premolar hypodontia. Rather, they suggest remarkable genetic heterogeneity of tooth agenesis. The available evidence suggests that quantitative defects during tooth development predispose to a failure to overcome a developmental threshold and to agenesis. The results of the study increase the understanding of the etiology and heredity of tooth agenesis. Further studies may lead to identification of novel genes that affect the development of teeth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most non-mammalian vertebrates, such as fish and reptiles, teeth are replaced continuously. However, tooth replacement in most mammals, including human, takes place only once and further renewal is apparently inhibited. It is not known how tooth replacement is genetically regulated, and little is known on the physiological mechanism and evolutionary reduction of tooth replacement in mammals. In this study I have attempted to address these questions. In a rare human condition cleidocranial dysplasia, caused by a mutation in a Runt domain transcription factor Runx2, tooth replacement is continued. Runx2 mutant mice were used to investigate the molecular mechanisms of Runx2 function. Microarray analysis from dissected embryonic day 14 Runx2 mutant and wild type dental mesenchymes revealed many downstream targets of Runx2, which were validated using in situ hybridization and tissue culture methods. Wnt signaling inhibitor Dkk1 was identified as a candidate target, and in tissue culture conditions it was shown that Dkk1 is induced by FGF4 and this induction is Runx2 dependent. These experiments demonstrated a connection between Runx2, FGF and Wnt signaling in tooth development and possibly also in tooth replacement. The role of Wnt signaling in tooth replacement was further investigated by using a transgenic mouse model where Wnt signaling mediator β-catenin is continuously stabilized in dental epithelium. This stabilization led to activated Wnt signaling and to the formation of multiple enamel knots. In vitro and transplantation experiments were performed to examine the process of extra tooth formation. We showed that new teeth were continuously generated and that new teeth form from pre-existing teeth. A morphodynamic activator-inhibitor model was used to simulate enamel knot formation. By increasing the intrinsic production rate of the activator (β-catenin), the multiple enamel knot phenotype was reproduced by computer simulations. It was thus concluded that β-catenin acts as an upstream activator of enamel knots, closely linking Wnt signaling to the regulation of tooth renewal. As mice do not normally replace teeth, we used other model animals to investigate the physiological and genetic mechanisms of tooth replacement. Sorex araneus, the common shrew was earlier reported to have non-functional tooth replacement in all antemolar tooth positions. We showed by histological and gene expression studies that there is tooth replacement only in one position, the premolar 4 and that the deciduous tooth is diminished in size and disappears during embryogenesis without becoming functional. The growth rates of deciduous and permanent premolar 4 were measured and it was shown by competence inference that the early initiation of the replacement tooth in relation to the developmental stage of the deciduous tooth led to the inhibition of deciduous tooth morphogenesis. It was concluded that the evolutionary loss of deciduous teeth may involve the early activation of replacement teeth, which in turn suppress their predecessors. Mustela putorius furo, the ferret, has a dentition that resembles that of the human as ferrets have teeth that belong to all four tooth families, and all the antemolar teeth are replaced once. To investigate the replacement mechanism, histological serial sections from different embryonic stages were analyzed. It was noticed that tooth replacement is a process which involves the growth and detachment of the dental lamina from the lingual cervical loop of the deciduous tooth. Detachment of the deciduous tooth leads to a free successional dental lamina, which grows deeper into the mesenchyme, and later buds the replacement tooth. A careful 3D analysis of serial histological sections was performed and it was shown that replacement teeth are initiated from the successional dental lamina and not from the epithelium of the deciduous tooth. The molecular regulation of tooth replacement was studied and it was shown by examination of expression patterns of candidate regulatory genes that BMP/Wnt inhibitor Sostdc1 was strongly expressed in the buccal aspect of the dental lamina, and in the intersection between the detaching deciduous tooth and the successional dental lamina, suggesting a role for Sostdc1 in the process of detachment. Shh was expressed in the enamel knot and in the inner enamel epithelium in both generations of teeth supporting the view that the morphogenesis of both generations of teeth is regulated by similar mechanisms. In summary, histological and molecular studies on different model animals and transgenic mouse models were used to investigate tooth replacement. This thesis work has significantly contributed to the knowledge on the physiological mechanisms and molecular regulation of tooth replacement and its evolutionary suppression in mammals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inherited retinal diseases are the most common cause of vision loss among the working population in Western countries. It is estimated that ~1 of the people worldwide suffer from vision loss due to inherited retinal diseases. The severity of these diseases varies from partial vision loss to total blindness, and at the moment no effective cure exists. To date, nearly 200 mapped loci, including 140 cloned genes for inherited retinal diseases have been identified. By a rough estimation 50% of the retinal dystrophy genes still await discovery. In this thesis we aimed to study the genetic background of two inherited retinal diseases, X-linked cone-rod dystrophy and Åland Island eye disease. X-linked cone-rod dystrophy (CORDX) is characterized by progressive loss of visual function in school age or early adulthood. Affected males show reduced visual acuity, photophobia, myopia, color vision defects, central scotomas, and variable changes in fundus. The disease is genetically heterogeneous and two disease loci, CORDX1 and CORDX2, were known prior to the present thesis work. CORDX1, located on Xp21.1-11.4, is caused by mutations in the RPGR gene. CORDX2 is located on Xq27-28 but the causative gene is still unknown. Åland Island eye disease (AIED), originally described in a family living in Åland Islands, is a congenital retinal disease characterized by decreased visual acuity, fundus hypopigmentation, nystagmus, astigmatism, red color vision defect, myopia, and defective night vision. AIED shares similarities with another retinal disease, congenital stationary night blindness (CSNB2). Mutations in the L-type calcium channel α1F-subunit gene, CACNA1F, are known to cause CSNB2, as well as AIED-like disease. The disease locus of the original AIED family maps to the same genetic interval as the CACNA1F gene, but efforts to reveal CACNA1F mutations in patients of the original AIED family have been unsuccessful. The specific aims of this study were to map the disease gene in a large Finnish family with X-linked cone-rod dystrophy and to identify the disease-causing genes in the patients of the Finnish cone-rod dystrophy family and the original AIED family. With the help of linkage and haplotype analyses, we could localize the disease gene of the Finnish cone-rod dystrophy family to the Xp11.4-Xq13.1 region, and thus establish a new genetic X-linked cone-rod dystrophy locus, CORDX3. Mutation analyses of candidate genes revealed three novel CACNA1F gene mutations: IVS28-1 GCGTC>TGG in CORDX3 patients, a 425 bp deletion, comprising exon 30 and flanking intronic regions in AIED patients, and IVS16+2T>C in an additional Finnish patient with a CSNB2-like phenotype. All three novel mutations altered splice sites of the CACNA1F gene, and resulted in defective pre-mRNA splicing suggesting altered or absent channel function as a disease mechanism. The analyses of CACNA1F mRNA also revealed novel alternative wt splice variants, which may enhance channel diversity or regulate the overall expression level of the channel. The results of our studies may be utilized in genetic counseling of the families, and they provide a basis for studies on the pathogenesis of these diseases. In the future, the knowledge of the genetic defects may be used in the identification of specific therapies for the patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypokinesia, rigidity, tremor, and postural instability are the cardinal symptoms of Parkinson s disease (PD). Since these symptoms are not specific to PD the diagnosis may be uncertain in early PD. Etiology and pathogenesis of PD remain unclear. There is no neuroprotective therapy. Genetic findings are expected to reveal metabolic routes in PD pathogenesis and thereby eventually lead to therapeutic innovations. In this thesis, we first aimed to study the usefulness and accuracy of 123I-b-CIT SPECT in the diagnosis of PD in a consecutive clinic-based material including various movement disorders. We subsequently a genetic project to identify genetic risk factors for sporadic PD using a candidate gene approach in a case-control setting including 147 sporadic PD patients and 137 spouse controls. Dopamine transporter imaging by 123I-b-CIT SPECT could distinguish PD from essential tremor, drug-induced parkinsonism, dystonia and psychogenic parkinsonism. However, b-CIT uptake in Parkinson plus syndromes (PSP and multiple system atrophy) and dementia with Lewy bodies was not significantly different from PD. 123I-b-CIT SPECT could not reliably differentiate PD from vascular parkinsonism. 123I-b-CIT SPECT was 100% sensitive and specific in the diagnosis of PD in patients younger than 55 years but less specific in older patients, due to differential distribution of the above conditions in the younger and older age groups. 123I-b-CIT SPECT correlated with symptoms and detected bilateral nigrostriatal defect in patients whose PD was still in unilateral stage. Thus, in addition to as a differential diagnostic aid, 123I-b-CIT SPECT may be used to detect PD early, even pre-symptomatically in at-risk individuals. 123I-b-CIT SPECT was used to aid in the collection of patients to the genetic studies. In the genetic part of this thesis we found an association between PD and a polymorphic CAG-repeat in POLG1 gene encoding the catalytic subunit of mitochondrial polymerase gamma. The CAG-repeat encodes a polyglutamine tract (polyQ), the two most common lengths of which are 10Q (86-90%) and 11Q. In our Finnish material, the rarer non-10Q or non-11Q length variants (6Q-9Q, 12Q-14Q, 4R+9Q) were more frequent in patients than in spouse controls (10% vs. 3.5 %, p=0.003), or population controls (p=0.001). Therefore, we performed a replication study in 652 North American PD patients and 292 controls. Non-10/11Q alleles were more common in the US PD patients compared to the controls but the difference did not reach statistical significance (p=0.07). This larger data suggested our original definition of variant length allele might need reconsideration. Most previous studies on phenotypic effects of POLG1 polyQ have defined 10Q as the only normal allele. Non-10Q alleles were significantly more common in patients compared to the controls (17.3% vs. 12.3 %, p= 0.005). This association between non-10Q length variants and PD remained significant when compared to a larger set of 1541 literature controls (p=0.00005). In conclusion, POLG1 polyQ alleles other than 10Q may predispose to PD. We did not find association between PD and parkin or DJ-1, genes underlying autosomal recessive parkinsonism. The functional Val158Met polymorphism, which affects the catalytic effect of COMT enzyme, and another coding polymorphism in COMT were not associated with PD in our patient material. The APOE e2/3/4 polymorphism modifies risk for Alzheimer s disease and prognosis of for example brain trauma. APOE promoter and enhancer polymorphisms 219G/T and +113G/C, and APOE e3 haplotypes, have also been shown to modify the risk of Alzheimer s disease but not reported in PD. No association was found between PD and APOE e2/3/4 polymorphism, the promoter or enhancer polymorphisms, or the e3 haplotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Childhood-onset mitochondrial diseases comprise a heterogeneous group of disorders, which may manifest with almost any symptom and affect any tissue or organ. Due to challenging diagnostics, most children still lack a specific aetiological diagnosis. The aim of this thesis was to find molecular causes for childhood-onset mitochondrial disorders in Finland. We identified the underlying cause for 25 children, and found three new diseases, which had not been diagnosed in Finland before. These diseases caused severe progressive infantile-onset encephalomyopathies, and were due to defects in mitochondrial DNA (mtDNA) maintenance. Furthermore, the thesis provides the molecular background of Finnish patients with ‘leukoencephalopathy with brain stem and spinal cord involvement and elevated brain lactate’ (LBSL). A new phenotype was identified to be due to mutations in Twinkle, resembling ‘infantile onset spinocerebellar ataxia’ (IOSCA). These mutations caused mtDNA depletion in the liver, thus confirming the essential role of Twinkle in mtDNA maintenance, and expanding the molecular background of mtDNA depletion syndromes. The major aetiology for infantile mitochondrial myopathy in Finland was discovered to be due to mutations in thymidine kinase 2 (TK2). A novel mutation with Finnish ancestry was identified, and a genotype-phenotype correlation with mutation-specific distribution of tissue involvement was found, thus proving that deficient TK2 may cause multi-tissue depletion and impair neuronal function. This work established the molecular diagnosis and advanced the knowledge of phenotypes among paediatric patients with polymerase gamma (POLG) mutations. The patients showed severe early-onset encephalopathy with intractable epilepsy. POLG mutations are not a prevalent cause of children’s ataxias, although ataxia is a major presenting symptom among adults. Our findings indicate that POLG mutations should be investigated even if typical MRI, histochemical or biochemical abnormalities are lacking. LBSL patients showed considerable variation in phenotype despite identical mutations. A common, most likely European, ancestry, and a relative high carrier frequency of these mutations in Finland were discovered; suggesting that LBSL may be a quite common leukoencephalopathy in other populations as well. The results suggest that MRI findings are so unique that the diagnosis of LBSL is possible to make without genetic studies. This thesis work has resulted in identification of new mitochondrial disorders in Finland, enhancing the understanding of the clinical variability and the importance of tissue-specificity of these disorders. In addition to providing specific diagnosis to the patients, these findings give light to the underlying pathogenetic mechanisms of childhood-onset mitochondrial disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migraine is the common cause of chronic episodic headache, affecting 12%-15% of the Caucasian population (41 million Europeans and some half a million Finns), and causes considerable loss of quality of life to its sufferers, as well as being linked to increased risk for a wide range of conditions, from depression to stroke. Migraine is the 19th most severe disease in terms of disability-adjusted life years, and 9th among women. It is characterized by attacks of headache accompanied by sensitivity to external stimuli lasting 4-72 hours, and in a third of cases by neurological aura symptoms, such as loss of vision, speech or muscle function. The underlying pathophysiology, including what triggers migraine attacks and why they occur in the first place, is largely unknown. The aim of this study was to identify genetic factors associated with the hereditary susceptibility to migraine, in order to gain a better understanding of migraine mechanisms. In this thesis, we report the results of genetic linkage and association analyses on a Finnish migraine patient collection as well as migraineurs from Australia, Denmark, Germany, Iceland and the Netherlands. Altogether we studied genetic information of nearly 7,000 migraine patients and over 50,000 population-matched controls. We also developed a new migraine analysis method called the trait component analysis, which is based on individual patient responses instead of the clinical diagnosis. Using this method, we detected a number of new genetic loci for migraine, including on chromosome 17p13 (HLOD 4.65) and 10q22-q23 (female-specific HLOD 7.68) with significant evidence of linkage, along with five other loci (2p12, 8q12, 4q28-q31, 18q12-q22, and Xp22) detected with suggestive evidence of linkage. The 10q22-q23 locus was the first genetic finding in migraine to show linkage to the same locus and markers in multiple populations, with consistent detection in six different scans. Traditionally, ion channels have been thought to play a role in migraine susceptibility, but we were able to exclude any significant role for common variants in a candidate gene study of 155 ion transport genes. This was followed up by the first genome-wide association study in migraine, conducted on 2,748 migraine patients and 10,747 matched controls followed by a replication in 3,209 patients and 40,062 controls. In this study, we found interesting results with genome-wide significance, providing targets for future genetic and functional studies. Overall, we found several promising genetic loci for migraine providing a promising base for future studies in migraine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bipolar disorder (BP) is a complex psychiatric disorder characterized by episodes of mania and depression. BP affects approximately 1% of the world’s population and shows no difference in lifetime prevalence between males and females. BP arises from complex interactions among genetic, developmental and environmental factors, and it is likely that several predisposing genes are involved in BP. The genetic background of BP is still poorly understood, although intensive and long-lasting research has identified several chromosomal regions and genes involved in susceptibility to BP. This thesis work aims to identify the genetic variants that influence bipolar disorder in the Finnish population by candidate gene and genome-wide linkage analyses in families with many BP cases. In addition to diagnosis-based phenotypes, neuropsychological traits that can be seen as potential endophenotypes or intermediate traits for BP were analyzed. In the first part of the thesis, we examined the role of the allelic variants of the TSNAX/DISC1 gene cluster to psychotic and bipolar spectrum disorders and found association of distinct allelic haplotypes with these two groups of disorders. The haplotype at the 5’ end of the Disrupted-in-Schizophrenia-1 gene (DISC1) was over-transmitted to males with psychotic disorder (p = 0.008; for an extended haplotype p = 0.0007 with both genders), whereas haplotypes at the 3’ end of DISC1 associated with bipolar spectrum disorder (p = 0.0002; for an extended haplotype p = 0.0001). The variants of these haplotypes also showed association with different cognitive traits. The haplotypes at the 5’ end associated with perseverations and auditory attention, while the variants at the 3’ end associated with several cognitive traits including verbal fluency and psychomotor processing speed. Second, in our complete set of BP families with 723 individuals we studied six functional candidate genes from three distinct signalling systems: serotonin-related genes (SLC6A4 and TPH2), BDNF -related genes (BDNF, CREB1 and NTRK2) and one gene related to the inflammation and cytokine system (P2RX7). We replicated association of the functional variant Val66Met of BDNF with BP and better performance in retention. The variants at the 5’ end of SLC6A4 also showed some evidence of association among males (p = 0.004), but the widely studied functional variants did not yield any significant results. A protective four-variant haplotype on P2RX7 showed evidence of association with BP and executive functions: semantic and phonemic fluency (p = 0.006 and p = 0.0003, respectively). Third, we analyzed 23 bipolar families originating from the North-Eastern region of Finland. A genome-wide scan was performed using the 6K single nucleotide polymorphism (SNP) array. We identified susceptibility loci at chromosomes 7q31 with a LOD score of 3.20 and at 9p13.1 with a LOD score of 4.02. We followed up both linkage findings in the complete set of 179 Finnish bipolar families. The finding on chromosome 9p13 was supported (maximum LOD score of 3.02), but the susceptibility gene itself remains unclarified. In the fourth part of the thesis, we wanted to test the role of the allelic variants that have associated with bipolar disorder in recent genome-wide association studies (GWAS). We could confirm findings for the DFNB31, SORCS2, SCL39A3, and DGKH genes. The best signal in this study comes from DFNB31, which remained significant after multiple testing corrections. Two variants of SORCS2 were allelic replications and presented the same signal as the haplotype analysis. However, no association was detected with the PALB2 gene, which was the most significantly associated region in the previous GWAS. Our results indicate that BP is heterogeneous and its genetic background may accordingly vary in different populations. In order to fully understand the allelic heterogeneity that underlies common diseases such as BP, complete genome sequencing for many individuals with and without the disease is required. Identification of the specific risk variants will help us better understand the pathophysiology underlying BP and will lead to the development of treatments with specific biochemical targets. In addition, it will further facilitate the identification of environmental factors that alter risk, which will potentially provide improved occupational, social and psychological advice for individuals with high risk of BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital nephrotic syndrome of the Finnish type (NPHS1, CNF) is an autosomal recessive disease, enriched in the Finnish population. NPHS1 is caused by a mutation in the NPHS1 gene. This gene encodes for nephrin, which is a major structural component of the slit diaphragm connecting podocyte foot processes in the glomerular capillary wall. In NPHS1, the genetic defect in nephrin leads to heavy proteinuria already in the newborn period. Finnish NPHS1 patients are nephrectomized at infancy, and after a short period of dialysis the patients receive a kidney transplant, which is the only curative therapy for the disease. In this thesis, we examined the cellular and molecular mechanisms leading to the progression of glomerulosclerosis and tubulointerstitial fibrosis in NPHS1 kidneys. Progressive mesangial expansion in NPHS1 kidneys is caused by mesangial cell hyperplasia and the accumulation of extracellular matrix proteins. Expansion of the extracellular matrix was caused by the normal mesangial cell component, collagen IV. However, no significant changes in mesangial cell phenotype or extracellular matrix component composition were observed. Endotheliosis was the main ultrastructural lesion observed in the endothelium of NPHS1 glomeruli. The abundant expression of vascular endothelial growth factor and its transcription factor hypoxia inducible factor-1 alpha were in accordance with the preserved structure of the endothelium in NPHS1 kidneys. Hypoperfusion of peritubular capillaries and tubulointerstitial hypoxia were evident in NPHS1 kidneys, indicating that these may play an important role in the rapid progression of fibrosis in the kidneys of NPHS1 patients. Upregulation of Angiotensin II was obvious, emphasizing its role in the pathophysiology of NPHS1. Excessive oxidative stress was evident in NPHS1 kidneys, manifested as an increase expression of p22phox, superoxide production, lipid oxide peroxidation and reduced antioxidant activity. In conclusion, our data indicate that mesangial cell proliferation and the accumulation of extracellular matrix accumulation are associated with the obliteration of glomerular capillaries, causing the reduction of circulation in peritubular capillaries. The injury and rarefaction of peritubular capillaries result in impairment of oxygen and nutrient delivery to the tubuli and interstitial cells, which correlates with the fibrosis, tubular atrophy and oxidative stress observed in NPHS1 kidneys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crohn s disease (CD) and ulcerative colitis (UC), collectively known as inflammatory bowel disease (IBD), are characterised by chronic inflammation of the gastrointestinal tract. IBD prevalence in Finland is approximately 3-4 per 1000 inhabitants with a peak incidence in adolescence. The symptoms of IBD include diarrhoea, abdominal pain, fever, and weight loss. The precise aetiology of IBD is unknown but interplay of environmental risk factors and immunologic changes trigger the disease in a genetically susceptible individual. Twin and family studies have provided strong evidence for genetic factors in IBD susceptibility, and genetic factors may be more prominent in CD than UC. The first CD susceptibility gene was identified in 2001. Three common mutations R702W, G908R, and 1007fs of the CARD15/NOD2 gene are shown to associate independently with CD but the magnitude of association varies between different populations. The present study aimed at identifying mutations and genetic variations in IBD susceptibility and candidate genes. In addition, correlation to phenotype was also assessed. One of the main objectives of this study was to evaluate the role of CARD15 in a Finnish CD cohort. 271 CD patients were studied for the three common mutations and the results showed a lower mutation frequency than in other Caucasian populations. Only 16% of the patients carried one of the three mutations. Ileal location as well as stricturing and penetrating behaviour of the disease were associated with occurrence of the mutations. The whole protein coding region of CARD15 was screened for possible Finnish founder mutations. In addition to several sequence variants, five novel mutations (R38M, W355X, P727L, W907R, and R1019X) were identified in five patients. Functional consequences of these novel variants were studied in vitro, and these studies demonstrated a profound impairment of MDP response. Investigation of CARD15 mutation frequency in healthy people across three continents showed a large geographic fluctuation. No simple correlation between mutation frequency and disease incidence was seen in populations studied. The occurrence of double mutant carriers in healthy controls suggested that the penetrance of risk alleles is low. Other main objectives aimed at identifying other genetic variations that are involved in the susceptibility to IBD. We investigated the most plausible IBD candidate genes including TRAF6, SLC22A4, SLC22A5, DLG5, TLR4, TNFRSF1A, ABCB1/MDR1, IL23R, and ATG16L1. The marker for a chromosome 5 risk haplotype and the rare HLA-DRB1*0103 allele were also studied. The study cohort consisted of 699 IBD patients (240 CD and 459 UC), of which 23% had a first-degree relative with IBD. Of the several candidate genes studied, IL23R was associated with CD susceptibility, and TNFRSF1A as well as the HLA-DRB1*0103 allele with UC susceptibility. IL23R variants also showed association with the stricturing phenotype and longer disease duration in CD patients. In addition, TNFRSF1A variants were more common among familial UC and ileocolonic CD. In conclusion, the common CARD15 mutations were shown to account for 16% of CD cases in Finland. Novel CARD15 variants identified in the present study are most likely disease-causing mutations, as judged by the results of in vitro studies. The present study also confirms the IL23R association with CD susceptibility and, in addition, TNFRSF1A and HLA-DRB1*0103 allele association with UC of specific clinical phenotypes.