65 resultados para Mesoscale models
Resumo:
This study evaluates three different time units in option pricing: trading time, calendar time and continuous time using discrete approximations (CTDA). The CTDA-time model partitions the trading day into 30-minute intervals, where each interval is given a weight corresponding to the historical volatility in the respective interval. Furthermore, the non-trading volatility, both overnight and weekend volatility, is included in the first interval of the trading day in the CTDA model. The three models are tested on market prices. The results indicate that the trading-time model gives the best fit to market prices in line with the results of previous studies, but contrary to expectations under non-arbitrage option pricing. Under non-arbitrage pricing, the option premium should reflect the cost of hedging the expected volatility during the option’s remaining life. The study concludes that the historical patterns in volatility are not fully accounted for by the market, rather the market prices options closer to trading time.
Resumo:
Yhteenveto: Järvien ainetasemallien kehittäminen.
Resumo:
Yhteenveto: Lumimallit vesistöjen ennustemalleissa
Resumo:
Cosmopolitan ideals have been on the philosophical agenda for several millennia but the end of the Cold War started a new discussion on state sovereignty, global democracy, the role of international law and global institutions. The Westphalian state system in practice since the 17th century is transforming and the democracy deficit needs new solutions. An impetus has been the fact that in the present world, an international body representing global citizens does not exist. In this Master’s thesis, the possibility of establishing a world parliament is examined. In a case analysis, 17 models on world parliament from two journals, a volume of essays and two other publications are discussed. Based on general observations, the models are divided into four thematic groups. The models are analyzed with an emphasis on feasible and probable elements. Further, a new scenario with a time frame of thirty years is proposed based on the methodology of normative futures studies, taking special interest in causal relationships and actions leading to change. The scenario presents three gradual steps that each need to be realized before a sustainable world parliament is established. The theoretical framework is based on social constructivism, and changes in international and multi-level governance are examined with the concepts of globalization, democracy and sovereignty. A feasible, desirable and credible world parliament is constituted gradually by implying electoral, democratic and legal measures for members initially from exclusively democratic states, parliamentarians, non-governmental organizations and other groups. The parliament should be located outside the United Nations context, since a new body avoids the problem of inefficiency currently prevailing in the UN. The main objectives of the world parliament are to safeguard peace and international law and to offer legal advice in cases when international law has been violated. A feasible world parliament is advisory in the beginning but it is granted legislative powers in the future. The number of members in the world parliament could also be extended following the example of the EU enlargement process.
Resumo:
Ecology and evolutionary biology is the study of life on this planet. One of the many methods applied to answering the great diversity of questions regarding the lives and characteristics of individual organisms, is the utilization of mathematical models. Such models are used in a wide variety of ways. Some help us to reason, functioning as aids to, or substitutes for, our own fallible logic, thus making argumentation and thinking clearer. Models which help our reasoning can lead to conceptual clarification; by expressing ideas in algebraic terms, the relationship between different concepts become clearer. Other mathematical models are used to better understand yet more complicated models, or to develop mathematical tools for their analysis. Though helping us to reason and being used as tools in the craftmanship of science, many models do not tell us much about the real biological phenomena we are, at least initially, interested in. The main reason for this is that any mathematical model is a simplification of the real world, reducing the complexity and variety of interactions and idiosynchracies of individual organisms. What such models can tell us, however, both is and has been very valuable throughout the history of ecology and evolution. Minimally, a model simplifying the complex world can tell us that in principle, the patterns produced in a model could also be produced in the real world. We can never know how different a simplified mathematical representation is from the real world, but the similarity models do strive for, gives us confidence that their results could apply. This thesis deals with a variety of different models, used for different purposes. One model deals with how one can measure and analyse invasions; the expanding phase of invasive species. Earlier analyses claims to have shown that such invasions can be a regulated phenomena, that higher invasion speeds at a given point in time will lead to a reduction in speed. Two simple mathematical models show that analysis on this particular measure of invasion speed need not be evidence of regulation. In the context of dispersal evolution, two models acting as proof-of-principle are presented. Parent-offspring conflict emerges when there are different evolutionary optima for adaptive behavior for parents and offspring. We show that the evolution of dispersal distances can entail such a conflict, and that under parental control of dispersal (as, for example, in higher plants) wider dispersal kernels are optimal. We also show that dispersal homeostasis can be optimal; in a setting where dispersal decisions (to leave or stay in a natal patch) are made, strategies that divide their seeds or eggs into fractions that disperse or not, as opposed to randomized for each seed, can prevail. We also present a model of the evolution of bet-hedging strategies; evolutionary adaptations that occur despite their fitness, on average, being lower than a competing strategy. Such strategies can win in the long run because they have a reduced variance in fitness coupled with a reduction in mean fitness, and fitness is of a multiplicative nature across generations, and therefore sensitive to variability. This model is used for conceptual clarification; by developing a population genetical model with uncertain fitness and expressing genotypic variance in fitness as a product between individual level variance and correlations between individuals of a genotype. We arrive at expressions that intuitively reflect two of the main categorizations of bet-hedging strategies; conservative vs diversifying and within- vs between-generation bet hedging. In addition, this model shows that these divisions in fact are false dichotomies.
Resumo:
Mesoscale weather phenomena, such as the sea breeze circulation or lake effect snow bands, are typically too large to be observed at one point, yet too small to be caught in a traditional network of weather stations. Hence, the weather radar is one of the best tools for observing, analyzing and understanding their behavior and development. A weather radar network is a complex system, which has many structural and technical features to be tuned, from the location of each radar to the number of pulses averaged in the signal processing. These design parameters have no universal optimal values, but their selection depends on the nature of the weather phenomena to be monitored as well as on the applications for which the data will be used. The priorities and critical values are different for forest fire forecasting, aviation weather service or the planning of snow ploughing, to name a few radar-based applications. The main objective of the work performed within this thesis has been to combine knowledge of technical properties of the radar systems and our understanding of weather conditions in order to produce better applications able to efficiently support decision making in service duties for modern society related to weather and safety in northern conditions. When a new application is developed, it must be tested against ground truth . Two new verification approaches for radar-based hail estimates are introduced in this thesis. For mesoscale applications, finding the representative reference can be challenging since these phenomena are by definition difficult to catch with surface observations. Hence, almost any valuable information, which can be distilled from unconventional data sources such as newspapers and holiday shots is welcome. However, as important as getting data is to obtain estimates of data quality, and to judge to what extent the two disparate information sources can be compared. The presented new applications do not rely on radar data alone, but ingest information from auxiliary sources such as temperature fields. The author concludes that in the future the radar will continue to be a key source of data and information especially when used together in an effective way with other meteorological data.
Resumo:
This thesis is composed of an introductory chapter and four applications each of them constituting an own chapter. The common element underlying each of the chapters is the econometric methodology. The applications rely mostly on the leading econometric techniques related to estimation of causal effects. The first chapter introduces the econometric techniques that are employed in the remaining chapters. Chapter 2 studies the effects of shocking news on student performance. It exploits the fact that the school shooting in Kauhajoki in 2008 coincided with the matriculation examination period of that fall. It shows that the performance of men declined due to the news of the school shooting. For women the similar pattern remains unobserved. Chapter 3 studies the effects of minimum wage on employment by employing the original Card and Krueger (1994; CK) and Neumark and Wascher (2000; NW) data together with the changes-in-changes (CIC) estimator. As the main result it shows that the employment effect of an increase in the minimum wage is positive for small fast-food restaurants and negative for big fast-food restaurants. Therefore, it shows that the controversial positive employment effect reported by CK is overturned for big fast-food restaurants and that the NW data are shown, in contrast to their original results, to provide support for the positive employment effect. Chapter 4 employs the state-specific U.S. data (collected by Cohen and Einav [2003; CE]) on traffic fatalities to re-evaluate the effects of seat belt laws on the traffic fatalities by using the CIC estimator. It confirms the CE results that on the average an implementation of a mandatory seat belt law results in an increase in the seat belt usage rate and a decrease in the total fatality rate. In contrast to CE, it also finds evidence on compensating-behavior theory, which is observed especially in the states by the border of the U.S. Chapter 5 studies the life cycle consumption in Finland, with the special interest laid on the baby boomers and the older households. It shows that the baby boomers smooth their consumption over the life cycle more than other generations. It also shows that the old households smoothed their life cycle consumption more as a result of the recession in the 1990s, compared to young households.
Resumo:
In recent years, thanks to developments in information technology, large-dimensional datasets have been increasingly available. Researchers now have access to thousands of economic series and the information contained in them can be used to create accurate forecasts and to test economic theories. To exploit this large amount of information, researchers and policymakers need an appropriate econometric model.Usual time series models, vector autoregression for example, cannot incorporate more than a few variables. There are two ways to solve this problem: use variable selection procedures or gather the information contained in the series to create an index model. This thesis focuses on one of the most widespread index model, the dynamic factor model (the theory behind this model, based on previous literature, is the core of the first part of this study), and its use in forecasting Finnish macroeconomic indicators (which is the focus of the second part of the thesis). In particular, I forecast economic activity indicators (e.g. GDP) and price indicators (e.g. consumer price index), from 3 large Finnish datasets. The first dataset contains a large series of aggregated data obtained from the Statistics Finland database. The second dataset is composed by economic indicators from Bank of Finland. The last dataset is formed by disaggregated data from Statistic Finland, which I call micro dataset. The forecasts are computed following a two steps procedure: in the first step I estimate a set of common factors from the original dataset. The second step consists in formulating forecasting equations including the factors extracted previously. The predictions are evaluated using relative mean squared forecast error, where the benchmark model is a univariate autoregressive model. The results are dataset-dependent. The forecasts based on factor models are very accurate for the first dataset (the Statistics Finland one), while they are considerably worse for the Bank of Finland dataset. The forecasts derived from the micro dataset are still good, but less accurate than the ones obtained in the first case. This work leads to multiple research developments. The results here obtained can be replicated for longer datasets. The non-aggregated data can be represented in an even more disaggregated form (firm level). Finally, the use of the micro data, one of the major contributions of this thesis, can be useful in the imputation of missing values and the creation of flash estimates of macroeconomic indicator (nowcasting).
Resumo:
This thesis report attempts to improve the models for predicting forest stand structure for practical use, e.g. forest management planning (FMP) purposes in Finland. Comparisons were made between Weibull and Johnson s SB distribution and alternative regression estimation methods. Data used for preliminary studies was local but the final models were based on representative data. Models were validated mainly in terms of bias and RMSE in the main stand characteristics (e.g. volume) using independent data. The bivariate SBB distribution model was used to mimic realistic variations in tree dimensions by including within-diameter-class height variation. Using the traditional method, diameter distribution with the expected height resulted in reduced height variation, whereas the alternative bivariate method utilized the error-term of the height model. The lack of models for FMP was covered to some extent by the models for peatland and juvenile stands. The validation of these models showed that the more sophisticated regression estimation methods provided slightly improved accuracy. A flexible prediction and application for stand structure consisted of seemingly unrelated regression models for eight stand characteristics, the parameters of three optional distributions and Näslund s height curve. The cross-model covariance structure was used for linear prediction application, in which the expected values of the models were calibrated with the known stand characteristics. This provided a framework to validate the optional distributions and the optional set of stand characteristics. Height distribution is recommended for the earliest state of stands because of its continuous feature. From the mean height of about 4 m, Weibull dbh-frequency distribution is recommended in young stands if the input variables consist of arithmetic stand characteristics. In advanced stands, basal area-dbh distribution models are recommended. Näslund s height curve proved useful. Some efficient transformations of stand characteristics are introduced, e.g. the shape index, which combined the basal area, the stem number and the median diameter. Shape index enabled SB model for peatland stands to detect large variation in stand densities. This model also demonstrated reasonable behaviour for stands in mineral soils.
Resumo:
Myrkyllisten aineiden jakaumat ja vaikutusmallit jätealueiden ympäristöriskien analyysissä.