36 resultados para magnetic rigidity constraint
Resumo:
Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.
Resumo:
The Grad–Shafranov reconstruction is a method of estimating the orientation (invariant axis) and cross section of magnetic flux ropes using the data from a single spacecraft. It can be applied to various magnetic structures such as magnetic clouds (MCs) and flux ropes embedded in the magnetopause and in the solar wind. We develop a number of improvements of this technique and show some examples of the reconstruction procedure of interplanetary coronal mass ejections (ICMEs) observed at 1 AU by the STEREO, Wind, and ACE spacecraft during the minimum following Solar Cycle 23. The analysis is conducted not only for ideal localized ICME events but also for non-trivial cases of magnetic clouds in fast solar wind. The Grad–Shafranov reconstruction gives reasonable results for the sample events, although it possesses certain limitations, which need to be taken into account during the interpretation of the model results.
Resumo:
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions. In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1
Resumo:
Pappret conceptualizes parsning med Constraint Grammar på ett nytt sätt som en process med två viktiga representationer. En representation innehåller lokala tvetydighet och den andra sammanfattar egenskaperna hos den lokala tvetydighet klasser. Båda representationer manipuleras med ren finite-state metoder, men deras samtrafik är en ad hoc -tillämpning av rationella potensserier. Den nya tolkningen av parsning systemet har flera praktiska fördelar, bland annat det inåt deterministiska sättet att beräkna, representera och räkna om alla potentiella tillämpningar av reglerna i meningen.