43 resultados para magnetic property
Resumo:
Magnetic susceptibility measurements were performed on freshly fallen Almahata Sitta meteorites. Most recovered samples are polymict ureilites. Those found in the first four months since impact, before the meteorites were exposed to rain, have a magnetic susceptibility in the narrow range of 4.92 ± 0.08 log 10-9 Am2/kg close to the range of other ureilite falls 4.95 ± 0.14 log 10-9 Am2/kg reported by Rochette et al. (2009). The Almahata Sitta samples collected one year after the fall have similar values (4.90 ± 0.06 log 10-9 Am2/kg), revealing that the effect of one-year of terrestrial weathering was not severe yet. However, our reported values are higher than derived from polymict (brecciated) ureilites 4.38 ± 0.47 log 10-9 Am2/kg (Rochette et al. 2009) containing both falls and finds confirming that these are significantly weathered. Additionally other fresh-looking meteorites of non-ureilitic compositions were collected in the Almahata Sitta strewn field. Magnetic susceptibility measurements proved to be a convenient non-destructive method for identifying non-ureilitic meteorites among those collected in the Almahata Sitta strewn field, even among fully crusted. Three such meteorites, no. 16, 25, and 41, were analyzed and their composition determined as EH6, H5 and EL6 respectively (Zolensky et al., 2010). A high scatter of magnetic susceptibility values among small (< 5 g) samples revealed high inhomogeneity within the 2008 TC3 material at scales below 1-2 cm.
Resumo:
Recently, focus of real estate investment has expanded from the building-specific level to the aggregate portfolio level. The portfolio perspective requires investment analysis for real estate which is comparable with that of other asset classes, such as stocks and bonds. Thus, despite its distinctive features, such as heterogeneity, high unit value, illiquidity and the use of valuations to measure performance, real estate should not be considered in isolation. This means that techniques which are widely used for other assets classes can also be applied to real estate. An important part of investment strategies which support decisions on multi-asset portfolios is identifying the fundamentals of movements in property rents and returns, and predicting them on the basis of these fundamentals. The main objective of this thesis is to find the key drivers and the best methods for modelling and forecasting property rents and returns in markets which have experienced structural changes. The Finnish property market, which is a small European market with structural changes and limited property data, is used as a case study. The findings in the thesis show that is it possible to use modern econometric tools for modelling and forecasting property markets. The thesis consists of an introduction part and four essays. Essays 1 and 3 model Helsinki office rents and returns, and assess the suitability of alternative techniques for forecasting these series. Simple time series techniques are able to account for structural changes in the way markets operate, and thus provide the best forecasting tool. Theory-based econometric models, in particular error correction models, which are constrained by long-run information, are better for explaining past movements in rents and returns than for predicting their future movements. Essay 2 proceeds by examining the key drivers of rent movements for several property types in a number of Finnish property markets. The essay shows that commercial rents in local markets can be modelled using national macroeconomic variables and a panel approach. Finally, Essay 4 investigates whether forecasting models can be improved by accounting for asymmetric responses of office returns to the business cycle. The essay finds that the forecast performance of time series models can be improved by introducing asymmetries, and the improvement is sufficient to justify the extra computational time and effort associated with the application of these techniques.
Resumo:
Brachial plexus birth injury (BPBI) is caused by stretching, tearing or avulsion of the C5-C8 or Th1 nerve roots during delivery. Foetal-maternal disproportion is the main reason for BPBI. The goal of this study was to find out the incidence of posterior subluxation of the humeral head during first year of life in BPBI and optimal timing of the ultrasonographic screening of the glenohumeral joint. The glenohumeral congruity and posterior subluxation of the humeral head associated to muscle atrophy were assessed and surgical treatment of the shoulder girdle as well as muscle changes in elbow flexion contracture were evaluated. The prospective, population based part of the study included all neonates born in Helsinki area during years 2003-2006. Patients with BPBI sent to the Hospital for Children and Adolescents because of decreased external rotation, internal rotation contracture or deformation of the glenohumeral joint as well as patients with elbow flexion contracture were also included in this prospective study. The incidence of BPBI was calculated to be 3.1/1000 newborns in Helsinki area. About 80% of the patients with BPBI recover totally during the follow-up within the first year of life. Permanent plexus injury at the age of one year was noted in 20% of the patients (0.64/1000 newborns). Muscle imbalance resulted in sonographically detected posterior subluxation in one third of the patients with permanent BPBI. If muscle imbalance and posterior subluxation are left untreated bony deformities will develop. All patients with internal rotation contracture of the glenohumeral joint presented muscle atrophy of the rotator cuff muscles. Especially subscapular and infraspinous muscles were affected. A correlation was found particularly between greatest thickness of subscapular muscle and subluxation of the humeral head, degree of glenoid retroversion, as well as amount of internal rotation contracture. Supinator muscle atrophy was evident among all the studied patients with elbow flexion contracture. Brachial muscle pathology seemed to be an important factor for elbow flexion contracture in BPBI. Residual dysfunction of the upper extremity may require operative treatment such as tendon lengthening, tendon transfers, relocation of the humeral head or osteotomy of the humerus. Relocation of the humeral head improved the glenohumeral congruency among patients under 5 years of age. Functional improvement without remodeling of the glenohumeral joint was achieved by other reconstructive procedures. In conclusion: Shoulder screening by US should be done to all patients with permanent BPBI at the age of 3 and 6 months. Especially atrophy of the subscapular muscle correlates with glenohumeral deformity and posterior subluxation of the humeral head, which has not been reported in previous studies. Permanent muscle changes are the main reason for diminished range of motion of the elbow and forearm. Relocation of the humeral head, when needed, should be performed under the age of 5 years.
Resumo:
The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.
Resumo:
Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.
Resumo:
The Grad–Shafranov reconstruction is a method of estimating the orientation (invariant axis) and cross section of magnetic flux ropes using the data from a single spacecraft. It can be applied to various magnetic structures such as magnetic clouds (MCs) and flux ropes embedded in the magnetopause and in the solar wind. We develop a number of improvements of this technique and show some examples of the reconstruction procedure of interplanetary coronal mass ejections (ICMEs) observed at 1 AU by the STEREO, Wind, and ACE spacecraft during the minimum following Solar Cycle 23. The analysis is conducted not only for ideal localized ICME events but also for non-trivial cases of magnetic clouds in fast solar wind. The Grad–Shafranov reconstruction gives reasonable results for the sample events, although it possesses certain limitations, which need to be taken into account during the interpretation of the model results.
Resumo:
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions. In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1