34 resultados para geografi


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Finnish regional development system has gone through structural reforms from state centered governed system to multi-actor governance, based on negotiation and cooperation. One of the reforms has been the regional cohesion and competitiveness program (COCO) established in 2010. The aim of the program is to increase competitiveness through all the regions and balance the regional development by supporting networking. The main focus of the program is to improve the methods and tools for regional development. In the program there are seven thematic networks founded around topics seen important national wide. This thesis explores regional development networks and their evaluation COCO:s two thematic networks, Wellbeing and Land use, housing and transportation as examples. The aim of the thesis is to explore the network actors understanding of thematic networks as tools for regional development. In particular, the study focuses on how the actors see the possible network level outcomes and wider effects of the networking activity. In addition, the central themes of the study are the prerequisite for successful network processes and improvement of the network process effectiveness by evaluation. The research material in this study consist the interviews of the network coordinators and national and regional actors participating in the network activities. The interviews were conducted in spring 2011. Based on the research results, the networks act on national regional and network level and across them. The cooperation is based on official and unofficial relations. The structure of the networks seemed to be self-organizing and controlled at the same time. The structural elements were found to set the framework for the network process and evaluation. According to the results, the networks enabled the more effective operation of the national development system, support of the regions and political lobbying. For the regions the networks offered support for areal development, new resources and possibility to influence national discourse. As conclusion, the role of the network was to disseminate information, create possibilities for collaboration and execute projects and studies and to effect on national policy making. These factors determined the effectiveness of the networks. However, because different regions were satisfied with different network level outcomes, the utilization of the networks in the regions should be evaluated by their own objectives. Resources, motivation, competence and perceptions of the effects were found to affect the successful implementation of the network process and cooperation in networks. Some network level obstacles could be overcome with coordination, but the challenge was the ability and motivation of the areas to utilize the networks as resources and see them as part of the comprehensive development agenda. Thus, the development should focus on how to increase awareness on how to improve regional cooperation processes and how multiple regional actors could enhance their working by utilizing the networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The urban heat island phenomenon is the most well-known all-year-round urban climate phenomenon. It occurs in summer during the daytime due to the short-wave radiation from the sun and in wintertime, through anthropogenic heat production. In summertime, the properties of the fabric of city buildings determine how much energy is stored, conducted and transmitted through the material. During night-time, when there is no incoming short-wave radiation, all fabrics of the city release the energy in form of heat back to the urban atmosphere. In wintertime anthropogenic heating of buildings and traffic deliver energy into the urban atmosphere. The initial focus of Helsinki urban heat island was on the description of the intensity of the urban heat island (Fogelberg 1973, Alestalo 1975). In this project our goal was to carry out as many measurements as possible over a large area of Helsinki to give a long term estimate of the Helsinki urban heat island. Helsinki is a city with 550 000 inhabitants and located on the north shore of Finnish Bay of the Baltic Sea. Initially, comparison studies against long-term weather station records showed that our regular, but weekly, sampling of observations adequately describe the Helsinki urban heat island. The project covered an entire seasonal cycle over the 12 months from July 2009 to June 2010. The measurements were conducted using a moving platform following microclimatological traditions. Tuesday was selected as the measuring day because it was the only weekday during the one year time span without any public holidays. Once a week, two set of measurements, in total 104, were conducted in the heterogeneous temperature conditions of Helsinki city centre. In the more homogeneous suburban areas, one set of measurements was taken every second week, to give a total of 52.The first set of measurements took place before noon, and the second 12 hours, just prior to midnight. Helsinki Kaisaniemi weather station was chosen as the reference station. This weather station is located in a large park in the city centre of Helsinki. Along the measurement route, 336 fixed points were established, and the monthly air temperature differences to Kaisaniemi were calculated to produce monthly and annual maps. The monthly air temperature differences were interpolated 21.1 km by 18.1 km horizontal grid with 100 metre resolution residual kriging method. The following independent variables for the kriging interpolation method were used: topographical height, portion of sea area, portion of trees, fraction of built-up and not built-up area, volumes of buildings, and population density. The annual mean air temperature difference gives the best representation of the Helsinki urban heat island effect- Due to natural variability of weather conditions during the measurement campaign care must be taken when interpretation the results for the monthly values. The main results of this urban heat island research project are: a) The city centre of Helsinki is warmer than its surroundings, both on a monthly main basis, and for the annual mean, however, there are only a few grid points, 46 out of 38 191, which display a temperature difference of more than 1K. b) If the monthly spatial variation is air temperature differences is small, then usually the temperature difference between the city and the surroundings is also small. c) Isolated large buildings and suburban centres create their own individual heat island. d) The topographical influence on air temperature can generally be neglected for the monthly mean, but can be strong under certain weather conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lifestyles of people living in single-family housing areas on the outskirts of the Greater Helsinki Region (GHR) are different from those living in inner city area. The urban structure of the GHR is concentrated in the capital on the one hand, and spread out across the outskirts on the other. Socioeconomic spatial divisions are evident as well-paid and educated residents move to the inner city or the single-family house dominated suburban neighbourhoods depending on their housing preferences and life situations. The following thesis explores how these lifestyles have emerged through the housing choices and daily mobility of the residents living in the new single-family housing areas on the outskirts of the GHR and the inner city. The study shows that, when it comes to lifestyles, residents on the outskirts of the region have different housing preferences and daily mobility patterns when compared with their inner city counterparts. Based on five different case study areas my results show that these differences are related to residents values, preferences and attitudes towards the neighbourhood, on the one hand, and limited by urban structure on the other. This also confirms earlier theoretical analyses and findings from the GHR. Residents who moved to the outskirts of Greater Helsinki Region and the apartment buildings of the inner city were similar in the basic elements of their housing preferences: they sought a safe and peaceful neighbourhood close to the natural environment. However, where housing choices, daily mobility and activities vary different lifestyles develop in both the outskirts and the inner city. More specifically, lifestyles in the city apartment blocks were inherently urban. Liveliness and highest order facilities were appreciated and daily mobility patterns were supported by diverse modes of transportation for the purposes of work, shopping and leisure time. On the outskirts, by contrast, lifestyles were largely post-suburban and child-friendliness appreciated. Due to the heterachical urban structure, daily mobility was more car-dependent since work, shopping and free time activities of the residents are more spread around the region. The urban structure frames the daily mobility on the outskirts of the region, but this is not to say that short local trips replace longer regional ones. This comparative case study was carried out in the single-family housing areas of Sundsberg in Kirkkonummi, Landbo in Helsinki and Ylästö in Vantaa, as well as in the inner city apartment building areas of Punavuori and Katajanokka in Helsinki. The data is comprised of residential surveys, interviews, and statistics and GIS data sets that illustrate regional daily mobility, socio-economic structure and vis-à-vis housing stock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periglacial processes act on cold, non-glacial regions where the landscape deveploment is mainly controlled by frost activity. Circa 25 percent of Earth's surface can be considered as periglacial. Geographical Information System combined with advanced statistical modeling methods, provides an efficient tool and new theoretical perspective for study of cold environments. The aim of this study was to: 1) model and predict the abundance of periglacial phenomena in subarctic environment with statistical modeling, 2) investigate the most import factors affecting the occurence of these phenomena with hierarchical partitioning, 3) compare two widely used statistical modeling methods: Generalized Linear Models and Generalized Additive Models, 4) study modeling resolution's effect on prediction and 5) study how spatially continous prediction can be obtained from point data. The observational data of this study consist of 369 points that were collected during the summers of 2009 and 2010 at the study area in Kilpisjärvi northern Lapland. The periglacial phenomena of interest were cryoturbations, slope processes, weathering, deflation, nivation and fluvial processes. The features were modeled using Generalized Linear Models (GLM) and Generalized Additive Models (GAM) based on Poisson-errors. The abundance of periglacial features were predicted based on these models to a spatial grid with a resolution of one hectare. The most important environmental factors were examined with hierarchical partitioning. The effect of modeling resolution was investigated with in a small independent study area with a spatial resolution of 0,01 hectare. The models explained 45-70 % of the occurence of periglacial phenomena. When spatial variables were added to the models the amount of explained deviance was considerably higher, which signalled a geographical trend structure. The ability of the models to predict periglacial phenomena were assessed with independent evaluation data. Spearman's correlation varied 0,258 - 0,754 between the observed and predicted values. Based on explained deviance, and the results of hierarchical partitioning, the most important environmental variables were mean altitude, vegetation and mean slope angle. The effect of modeling resolution was clear, too coarse resolution caused a loss of information, while finer resolution brought out more localized variation. The models ability to explain and predict periglacial phenomena in the study area were mostly good and moderate respectively. Differences between modeling methods were small, although the explained deviance was higher with GLM-models than GAMs. In turn, GAMs produced more realistic spatial predictions. The single most important environmental variable controlling the occurence of periglacial phenomena was mean altitude, which had strong correlations with many other explanatory variables. The ongoing global warming will have great impact especially in cold environments on high latitudes, and for this reason, an important research topic in the near future will be the response of periglacial environments to a warming climate.