78 resultados para gene deletion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nemaline myopathy (NM) is a rare muscle disorder characterised by muscle weakness and nemaline bodies in striated muscle tissue. Nemaline bodies are derived from sarcomeric Z discs and may be detected by light microscopy. The disease can be divided into six subclasses varying from very severe, in some cases lethal forms to milder forms. NM is usually the consequence of a gene mutation and the mode of inheritance varies between NM subclasses and different families. Mutations in six genes are known to cause NM; nebulin (NEB), alpha-actin, alpha-tropomyosin (TPM3), troponin T1, beta-tropomyosin (TPM2) and cofilin 2, of which nebulin and -actin are the most common. One of the main interests of my research is NEB. Nebulin is a giant muscle protein (600-900 kDa) expressed mainly in the thin filaments of striated muscle. Mutations in NEB are the main cause of autosomal recessive NM. The gene consists of 183 exons. Thus being gigantic, NEB is very challenging to investigate. NEB was screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC) and sequencing. DNA samples from 44 families were included in this study, and we found and published 45 different mutations in them. To date, we have identified 115 mutations in NEB in a total of 96 families. In addition, we determined the occurrence in a world-wide sample cohort of a 2.5 kb deletion containing NEB exon 55 identified in the Ashkenazi Jewish population. In order to find the seventh putative NM gene a genome-wide linkage study was performed in a series of Turkish families. In two of these families, we identified a homozygous mutation disrupting the termination signal of the TPM3 gene, a previously known NM-causing gene. This mutation is likely a founder mutation in the Turkish population. In addition, we described a novel recessively inherited distal myopathy, named distal nebulin myopathy, caused by two different homozygous missense mutations in NEB in six Finnish patients. Both mutations, when combined in compound heterozygous form with a more disruptive mutation, are known to cause NM. This study consisted of molecular genetic mutation analyses, light and electron microscopic studies of muscle biopsies, muscle imaging and clinical examination of patients. In these patients the distribution of muscle weakness was different from NM. Nemaline bodies were not detectable with routine light microscopy, and they were inconspicuous or absent even using electron microscopy. No genetic cause was known to underlie cap myopathy, a congenital myopathy characterised by cap-like structures in the muscle fibres, until we identified a deletion of one codon of the TPM2 gene, in a 30-year-old cap myopathy patient. This mutation does not change the reading frame of the gene, but a deletion of one amino acid does affect the conformation of the protein produced. In summary, this thesis describes a novel distal myopathy caused by mutations in the nebulin gene, several novel nebulin mutations associated with nemaline myopathy, the first molecular genetic cause of cap myopathy, i.e. a mutation in the beta-tropomyosin gene, and a founder mutation in the alpha-tropomyosin gene underlying autosomal recessive nemaline myopathy in the Turkish population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are major contributors to morbidity and mortality worldwide. Several interacting environmental, biochemical, and genetic risk factors can increase disease susceptibility. While some of the genes involved in the etiology of CVD are known, many are yet to be discovered. During the last few decades, scientists have searched for these genes with genome-wide linkage and association methods, and with more targeted candidate gene studies. This thesis investigates variation within the upstream transcription factor 1 (USF1) gene locus in relation to CVD risk factors, atherosclerosis, and incidence and prevalence of CVD. This candidate gene was first identified in Finnish families ascertained for familial combined hyperlipidemia, a common dyslipidemia predisposing to coronary heart disease. The gene is a ubiquitously expressed transcription factor regulating expression of several genes from lipid and glucose metabolism, inflammation, and endothelial function. First, we examined association between USF1 variants and several CVD risk factors, such as lipid phenotypes, body composition measures, and metabolic syndrome, in two prospective population cohorts. Our data suggested that USF1 contributes to these CVD risk factors at the population level. Notably, the associations with quantitative measurements were mostly detected among study subjects with CVD or metabolic syndrome, suggesting complex interactions between USF1 effects and the pathophysiological state of an individual. Second, we investigated how variation at the USF1 locus contributes to atherosclerotic lesions of the coronary arteries and abdominal aorta. For this, we used two study samples of middle-aged men with detailed measurements of atherosclerosis obtained in autopsy. USF1 variation significantly associated with areas of several types of lesions, especially with calcification of the arteries. Next, we tested what effect the USF1 risk variants have on sudden cardiac death and incidence of CVD. The atherosclerosis-associated risk variant increased the risk of sudden cardiac death of the same study subjects. Furthermore, USF1 alleles associated with incidence of CVD in the Finnish population follow-up cohorts. These associations were especially prominent among women, suggesting a sex specific effect, which has also been detected in subsequent studies. Finally, as some of the low-yield DNA samples of the Finnish follow-up study cohort needed to be whole-genome amplified (WGA) prior to genotyping, we evaluated whether the produced WGA genotypes were of good quality. Although the samples giving genotype discrepancies could not be detected before genotyping with standard laboratory quality control methods, our results suggested that enhanced quality control at the time of the genotyping could identify such samples. In addition, combining two WGA reactions into one pooled DNA sample for genotyping markedly reduced the number of discrepancies and samples showing them. In conclusion, USF1 seems to have a role in the etiology of CVD. Additional studies are warranted to identify functional variants and to study interactions between USF1 and other genetic or environmental factors. This USF1 study, and other studies with low DNA yield of some samples, can benefit from whole genome amplification of the low-yield samples prior to genotyping. Careful quality control procedures are, however, needed in WGA genotyping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mulibrey nanism is a hereditary developmental disorder, characterized by prenatal onset growth failure without postnatal catch-up growth, distinctive craniofacial features, progressive cardiopathy and failure of sexual maturation. In addition, the patients develop insulin resistance syndrome and type 2 diabetes and they have an increased risk of developing tumors. The TRIM37 gene that underlies mulibrey nanism encodes for a member of the tripartite motif (TRIM) protein family. The physiological function of TRIM37 and the pathogenetic mechanisms leading from TRIM37 dysfunction to the mulibrey nanism phenotype are unknown. However, TRIM37 localizes at least partially to peroxisomes, and possesses ubiquitin E3-ligase activity. Thus, it may mediate ubiquitin dependent protein degradation, suggesting that accumulation of yet unknown substrate proteins may underlie the disease pathogenesis. In this study, the TRIM37 gene was characterized in detail. A transcription initiation window, with several separate transcription start sites, was identified and the putative promoter region immediately upstream from the transcription initiation window was shown to possess basal promoter activity. Further, several alternative splice variants of the gene were identified, including a highly expressed testis specific variant, encoding for an identical protein product with the main transcript. Expression of TRIM37 mRNA was detected in several different tissues, with highest expression seen in testis and in brain, when the expression patterns of the two major transcripts in different human tissues were studied by quantitative real-time PCR. Several mulibrey nanism patients were studied and thirteen novel mutations in TRIM37 were found, including three mutations (p.Gly322Val, p.Cys109Ser, p.Glu271_Ser287), that are likely to express mutant TRIM37 proteins. These mutations were further shown to alter the subcellular localization of the mutant proteins. Most of the mulibrey nanism associated mutations however, lead to premature termination codons and degradation of mRNA. All the TRIM37 mutations identified to date predict loss-of-function alleles, and thus no phenotype-genotype correlation is seen among the patients. In order to understand the pathogenetic mechanisms underlying mulibrey nanism, an animal model for the disorder is needed. For the development of a Trim37 knock-out mouse, the mouse Trim37 gene was characterized. Alternative splice variants, were identified, including a testis specific variant predicting a longer protein product. Further, a strictly tissue and cell-specific pattern of Trim37 expression was observed in developing and adult mouse tissues, when studied by immunohistochemical methods. This distribution of Trim37 expression in mouse tissues is in agreement with the clinical findings in human mulibrey nanism patients. This thesis work gives new tools for the diagnostics of mulibrey nanism as well as for studying the molecular pathogenesis behind this interesting disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heredity explains a major part of the variation in calcium homeostasis and bone strength, and the susceptibility to osteoporosis is polygenetically regulated. Bone phenotype results from the interplay between lifestyle and genes, and several nutritional factors modulate bone health throughout life. Thus, nutrigenetics examining the genetic variation in nutrient intake and homeostatic control is an important research area in the etiology of osteoporosis. Despite continuing progress in the search for candidate genes for osteoporosis, the results thus far have been inconclusive. The main objective of this thesis was to investigate the associations of lactase, vitamin D receptor (VDR), calcium sensing receptor (CaSR) and parathyroid hormone (PTH) gene polymorphisms and lifestyle factors and their interactions with bone health in Finns at varying stages of the skeletal life span. Markers of calcium homeostasis and bone remodelling were measured from blood and urine samples. Bone strength was measured at peripheral and central bone sites. Lifestyle factors were assessed with questionnaires and interviews. Genetic lactase non-persistence (the C/C-13910 genotype) was associated with lower consumption of milk from childhood, predisposing females in particular to inadequate calcium intake. Consumption of low-lactose milk and milk products was shown to decrease the risk for inadequate calcium intake. In young adulthood, bone loss was more common in males than in females. Males with the lactase C/C-13910 genotype may be more susceptible to bone loss than males with the other lactase genotypes, although calcium intake predicts changes in bone mass more than the lactase genotype. The BsmI and FokI polymorphisms of the VDR gene were associated with bone mass in growing adolescents, but the associations weakened with age. In young adults, the A986S polymorphism of the calcium sensing receptor gene was associated with serum ionized calcium concentrations, and the BstBI polymorphism of the parathyroid gene was related to bone strength. The FokI polymorphism and sodium intake showed an interaction effect on urinary calcium excretion. A novel gene-gene interaction between the VDR FokI and PTH BstBI gene polymorphisms was found in the regulation of PTH secretion and urinary calcium excretion. Further research should be carried out with more number of Finns at varying stages of the skeletal life span and more detailed measurements of bone strength. Research should concern mechanisms by which genetic variants affect calcium homeostasis and bone strength, and the role of diet-gene and gene-gene interactions in the pathogenesis of osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microarrays are high throughput biological assays that allow the screening of thousands of genes for their expression. The main idea behind microarrays is to compute for each gene a unique signal that is directly proportional to the quantity of mRNA that was hybridized on the chip. A large number of steps and errors associated with each step make the generated expression signal noisy. As a result, microarray data need to be carefully pre-processed before their analysis can be assumed to lead to reliable and biologically relevant conclusions. This thesis focuses on developing methods for improving gene signal and further utilizing this improved signal for higher level analysis. To achieve this, first, approaches for designing microarray experiments using various optimality criteria, considering both biological and technical replicates, are described. A carefully designed experiment leads to signal with low noise, as the effect of unwanted variations is minimized and the precision of the estimates of the parameters of interest are maximized. Second, a system for improving the gene signal by using three scans at varying scanner sensitivities is developed. A novel Bayesian latent intensity model is then applied on these three sets of expression values, corresponding to the three scans, to estimate the suitably calibrated true signal of genes. Third, a novel image segmentation approach that segregates the fluorescent signal from the undesired noise is developed using an additional dye, SYBR green RNA II. This technique helped in identifying signal only with respect to the hybridized DNA, and signal corresponding to dust, scratch, spilling of dye, and other noises, are avoided. Fourth, an integrated statistical model is developed, where signal correction, systematic array effects, dye effects, and differential expression, are modelled jointly as opposed to a sequential application of several methods of analysis. The methods described in here have been tested only for cDNA microarrays, but can also, with some modifications, be applied to other high-throughput technologies. Keywords: High-throughput technology, microarray, cDNA, multiple scans, Bayesian hierarchical models, image analysis, experimental design, MCMC, WinBUGS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The future use of genetically modified (GM) plants in food, feed and biomass production requires a careful consideration of possible risks related to the unintended spread of trangenes into new habitats. This may occur via introgression of the transgene to conventional genotypes, due to cross-pollination, and via the invasion of GM plants to new habitats. Assessment of possible environmental impacts of GM plants requires estimation of the level of gene flow from a GM population. Furthermore, management measures for reducing gene flow from GM populations are needed in order to prevent possible unwanted effects of transgenes on ecosystems. This work develops modeling tools for estimating gene flow from GM plant populations in boreal environments and for investigating the mechanisms of the gene flow process. To describe spatial dimensions of the gene flow, dispersal models are developed for the local and regional scale spread of pollen grains and seeds, with special emphasis on wind dispersal. This study provides tools for describing cross-pollination between GM and conventional populations and for estimating the levels of transgenic contamination of the conventional crops. For perennial populations, a modeling framework describing the dynamics of plants and genotypes is developed, in order to estimate the gene flow process over a sequence of years. The dispersal of airborne pollen and seeds cannot be easily controlled, and small amounts of these particles are likely to disperse over long distances. Wind dispersal processes are highly stochastic due to variation in atmospheric conditions, so that there may be considerable variation between individual dispersal patterns. This, in turn, is reflected to the large amount of variation in annual levels of cross-pollination between GM and conventional populations. Even though land-use practices have effects on the average levels of cross-pollination between GM and conventional fields, the level of transgenic contamination of a conventional crop remains highly stochastic. The demographic effects of a transgene have impacts on the establishment of trangenic plants amongst conventional genotypes of the same species. If the transgene gives a plant a considerable fitness advantage in comparison to conventional genotypes, the spread of transgenes to conventional population can be strongly increased. In such cases, dominance of the transgene considerably increases gene flow from GM to conventional populations, due to the enhanced fitness of heterozygous hybrids. The fitness of GM plants in conventional populations can be reduced by linking the selectively favoured primary transgene to a disfavoured mitigation transgene. Recombination between these transgenes is a major risk related to this technique, especially because it tends to take place amongst the conventional genotypes and thus promotes the establishment of invasive transgenic plants in conventional populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies human gene expression space using high throughput gene expression data from DNA microarrays. In molecular biology, high throughput techniques allow numerical measurements of expression of tens of thousands of genes simultaneously. In a single study, this data is traditionally obtained from a limited number of sample types with a small number of replicates. For organism-wide analysis, this data has been largely unavailable and the global structure of human transcriptome has remained unknown. This thesis introduces a human transcriptome map of different biological entities and analysis of its general structure. The map is constructed from gene expression data from the two largest public microarray data repositories, GEO and ArrayExpress. The creation of this map contributed to the development of ArrayExpress by identifying and retrofitting the previously unusable and missing data and by improving the access to its data. It also contributed to creation of several new tools for microarray data manipulation and establishment of data exchange between GEO and ArrayExpress. The data integration for the global map required creation of a new large ontology of human cell types, disease states, organism parts and cell lines. The ontology was used in a new text mining and decision tree based method for automatic conversion of human readable free text microarray data annotations into categorised format. The data comparability and minimisation of the systematic measurement errors that are characteristic to each lab- oratory in this large cross-laboratories integrated dataset, was ensured by computation of a range of microarray data quality metrics and exclusion of incomparable data. The structure of a global map of human gene expression was then explored by principal component analysis and hierarchical clustering using heuristics and help from another purpose built sample ontology. A preface and motivation to the construction and analysis of a global map of human gene expression is given by analysis of two microarray datasets of human malignant melanoma. The analysis of these sets incorporate indirect comparison of statistical methods for finding differentially expressed genes and point to the need to study gene expression on a global level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents methods for locating and analyzing cis-regulatory DNA elements involved with the regulation of gene expression in multicellular organisms. The regulation of gene expression is carried out by the combined effort of several transcription factor proteins collectively binding the DNA on the cis-regulatory elements. Only sparse knowledge of the 'genetic code' of these elements exists today. An automatic tool for discovery of putative cis-regulatory elements could help their experimental analysis, which would result in a more detailed view of the cis-regulatory element structure and function. We have developed a computational model for the evolutionary conservation of cis-regulatory elements. The elements are modeled as evolutionarily conserved clusters of sequence-specific transcription factor binding sites. We give an efficient dynamic programming algorithm that locates the putative cis-regulatory elements and scores them according to the conservation model. A notable proportion of the high-scoring DNA sequences show transcriptional enhancer activity in transgenic mouse embryos. The conservation model includes four parameters whose optimal values are estimated with simulated annealing. With good parameter values the model discriminates well between the DNA sequences with evolutionarily conserved cis-regulatory elements and the DNA sequences that have evolved neutrally. In further inquiry, the set of highest scoring putative cis-regulatory elements were found to be sensitive to small variations in the parameter values. The statistical significance of the putative cis-regulatory elements is estimated with the Two Component Extreme Value Distribution. The p-values grade the conservation of the cis-regulatory elements above the neutral expectation. The parameter values for the distribution are estimated by simulating the neutral DNA evolution. The conservation of the transcription factor binding sites can be used in the upstream analysis of regulatory interactions. This approach may provide mechanistic insight to the transcription level data from, e.g., microarray experiments. Here we give a method to predict shared transcriptional regulators for a set of co-expressed genes. The EEL (Enhancer Element Locator) software implements the method for locating putative cis-regulatory elements. The software facilitates both interactive use and distributed batch processing. We have used it to analyze the non-coding regions around all human genes with respect to the orthologous regions in various other species including mouse. The data from these genome-wide analyzes is stored in a relational database which is used in the publicly available web services for upstream analysis and visualization of the putative cis-regulatory elements in the human genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meckel syndrome (MKS, MIM 249000) is a severe developmental disorder that leads to death already in utero or shortly after birth. MKS diagnosis can be established by a careful ultrasound examination already at 11-14 weeks of gestation. The main features of MKS are occipital meningoencephalocele, cystic kidney dysplasia and fibrotic changes of the liver. In addition, polydactyly is frequently reported in the cases. The aim of the study was to characterize the molecular and functional defects in MKS. In this study we were able to identify two major MKS mutations in Finnish population, which cover over 90% of the cases. The first mutation is a 29 bp intronic deletion in the MKS1 gene (c.1483-7_35del) that is found in 70% of the families and the second is a C>T substitution in the coding region of CC2D2A (c.1762C>T), that is found in 20% of the MKS families. Both of these mutations result in abnormal splicing. The discovery of the disease genes has revealed that MKS is caused by primary cilia dysfunction. MKS1 gene has a conserved B9 domain, and it is found in the predicted ciliary proteome. CC2D2A protein is also found in the predicted ciliary proteome and it has a Ca2+ binding domain. The number of genes behind MKS has increased rapidly in the past years and to date, mutations have been identified in five genes (MKS1, TMEM67/MKS3, CEP290/MKS4, RPGRIP1L/MKS5 and CC2D2A/MKS6). Identification of the disease genes mutations has also revealed that MKS is an allelic disorder with other syndromes with overlapping phenotypes. Disorders that are caused by primary cilia dysfunction are collectively known as ciliopathies. Sequence analysis of all the known MKS genes in Finnish and non-Finnish families available to us, where the mutation was still unknown, revealed mutations in 14 out of the 30 families included in the study. When we collected all the reported mutations in MKS genes in different syndromes we could see that there was clearly a genotype-syndrome correlation between the mutations and the syndromes, since the same pair of mutations has never been reported in different syndromes. The basic molecular events behind MKS will not only give us information of this syndrome, but also significant novel information on early fetal development in general.