38 resultados para Zoonotic pathogens


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streptococcus pneumoniae (pneumococcus) is a normal inhabitant of the human nasopharynx. Symptoms occur in only a small proportion of those who become carriers, but the ubiquity of the organism in the human population results in a large burden of disease. S. pneumoniae is the leading bacterial cause of pneumonia, sepsis, and meningitis worldwide, causing the death of a million children each year. Middle-ear infection is the most common clinical manifestation of mucosal pneumococcal infections. In invasive disease, S. pneumoniae gains access to the bloodstream and spreads to normally sterile parts of the body. The progression from asymptomatic colonization to disease depends on factors characteristic of specific pneumococcal strains as well as the status of host defenses. The polysaccharide capsule surrounding the bacterium is considered to be the most important factor affecting the virulence of pneumococci. It protects pneumococci from phagocytosis and also may determine its affinity to the respiratory epithelium. S. pneumoniae as a species comprises more than 90 different capsular serotypes, but not all of them are equally prevalent in human diseases. Invasive serotypes are rarely isolated from healthy carriers, but relatively often cause invasive disease. Serotypes that are carried asymptomatically for a long time behave like opportunistic pathogens, causing disease in patients who have impaired immune defenses. The complement system is a collection of blood and cell surface proteins that act as a major primary defense against invading microbes. Phagocytic cells with receptors for complement proteins can engulf and destroy pneumococcal cells opsonized with these proteins. S. pneumoniae has evolved a number of ways to subvert mechanisms of innate immunity, and this is likely to contribute to its pathogenicity. The capsular serotype, proteins essential for virulence, as well the genotype, may all influence the ability of pneumococcus to resist complement and its potential to cause disease. Immunization with conjugate vaccines produces opsonic antibodies, which enhance complement deposition and clearance of the bacteria. The pneumococcal vaccine included in the Finnish national immunization program in 2010 contains the most common serotypes causing invasive disease. Clinical data suggest that protection from middle-ear infection and possibly also from invasive disease depends largely on the capsular serotype, for reasons hitherto unknown. The general aim of this thesis is to assess the relative roles of the pneumococcal capsule and virulence proteins in complement evasion and subsequent opsonophagocytic killing. The main question is whether differences between serotypes to resist complement explain the different abilities of serotypes to cause disease. The importance of particular virulence factors to the complement resistance of a strain may vary depending on its genotype. Prior studies have evaluated the effect of the capsule and virulence proteins on complement resistance of S. pneumoniae by comparing only a few strains. In this thesis, the role of pneumococcal virulence factors in the complement resistance of the bacterium was studied in several genotypically different strains. The ability of pneumococci to inhibit deposition of the complement protein C3 on the bacterial surface was found to depend on the capsular serotype as well as on other features of the bacteria. The results suggest that pneumococcal histidine triad (Pht) proteins may play a role in complement inhibition, but their contribution depends on the bacterial genotype. The capsular serotype was found to influence complement resistance more than the bacterial genotype. A higher concentration of anticapsular antibodies was required for the opsonophagocytic killing of serotypes resistant to C3 deposition. The invasive serotypes were more resistant to C3 deposition than the opportunistic serotypes, suggesting that the former are better adapted to resist immune mechanisms controlling the development of invasive disease. The different susceptibilities of serotypes to complement deposition, opsonophagocytosis, and resultant antibody-mediated protection should be taken into account when guidelines for serological correlates for vaccine efficacy evaluations are made. The results of this thesis suggest that antibodies in higher quantity or quality are needed for efficient protection against the invasive serotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial genus Stenotrophomonas comprises 12 species. They are widely found throughout the environment and particularly S. maltophilia, S. rhizophila and S. pavanii are closely associated with plants. Strains of the most common Stenotrophomonas species, S. maltophilia, promote plant growth and health, degrade natural and man-made pollutants and produce biomolecules of biotechnological and economical value. Many S. maltophilia –strains are also multidrug resistant and can act as opportunistic human pathogens. During an INCO-project (1998-2002) rhizobia were collected from root nodules of the tropical leguminous tree Calliandra calothyrsus Meisn. from several countries in Central America, Africa and New Caledonia. The strains were identified by the N2-group (Helsinki university) and some strains turned out to be members of the genus Stenotrophomonas. Several Stenotrophomonas strains induced white tumor- or nodule-like structures on Calliandra?s roots in plant experiments. The strains could, besides from root nodules, also be isolated from surface sterilized roots and stems. The purpose of my work was to investigate if the Stenotrophomonas strains i) belong to a new Stenotrophomonas species, ii) have the same origin, iii) if there are other differences than colony morphology between phase variations of the same strain, iv) have plant growth-promoting (PGP) activity or other advantageous effects on plants, and v) like rhizobia have ability to induce root nodule formation. The genetic diversity and clustering of the Stenotrophomonas strains were analyzed with AFLP fingerprinting to get indications about their geographical origin. Differences in enzymatic properties and ability to use different carbon and energy sources were tested between the two phases of each strain with commercial API tests for bacterial identification. The ability to infect root hairs and induce root nodule formation was investigated both using plant tests with the host plant Calliandra and PCR amplification of nodA and nodC genes for nodulation. The PGP activity of the strains was tested in vitro mainly with plate methods. The impact on growth, nitrogen content and nodulation in vivo was investigated through greenhouse experiments with the legumes Phaseolus vulgaris and Galega orientalis. Both the genetic and phenotypic diversity among the Stenotrophomonas strains was small, which proposes that they have the same origin. The strains brought about changes on the root hairs of Calliandra and they also increased the amount of root hairs. However, no root nodules were detected. The strains produced IAA, protease and lipase in vitro. They also showed plant a growth-promoting effect on G. orientalis, both alone and together with R. galegae HAMBI 540, and also activated nodulation among efficient rhizobia on P. vulgaris in greenhouse. It requires further research to get a better picture about the mechanisms behind the positive effects. The results in this thesis, however, confirm earlier studies concerning Stenotrophomonas positive impact on plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perunalla (Solanum tuberosum L.) tällä hetkellä maailmanlaajuisesti eniten sato- ja laatutappioita aiheuttaa perunan Y-virus (PVY). Vaikka pelkän Y-viruksen aiheuttamaa satotappiota on vaikea mitata, on sen arvioitu olevan 20-80 %. Viruksen tärkein leviämistapa on viroottinen siemenperuna. Korkealaatuinen siemenperuna on edellytys ruoka-, ruokateollisuus- ja tärkkelysperunan tuotannolle. Kasvuston silmämääräinen tarkastelu aliarvioi yleensä Y-viruksen esiintyvyyttä. Laboratoriotestauksen avulla saadaan tarkempi tieto pellolta korjatun sadon saastunta-asteesta. Ongelmana Y-viruksen testaamisessa on, että sitä ei havaita dormanssissa olevista perunoista otetuista näytteistä yhtä luotettavasti kuin jo dormanssin ohittaneista perunoista testattaessa. Erilaisia menetelmiä kemikaaleista (Rindite, bromietaani) kasvihormoneihin (mm. gibberelliinihappo) ja varastointiolosuhteiden muutoksiin (kylmä- ja lämpökäsittely) on kokeiltu perunan dormanssin purkamiseen, mutta tulokset ovat olleet vaihtelevia. Tässä tutkielmassa perunan dormanssin purkamiseen käytettiin happi-hiilidioksidikäsittelyä (O2 40 % ja CO2 20 %) eripituisina käsittelyaikoina. Tarkoituksena oli selvittää, vaikuttaako käsittely perunan itämiseen ja dormanssin luontaista aikaisempaan purkautumiseen tai Y-viruksen havaitsemiseen. Lisäksi haluttiin selvittää, voiko Y-viruksen määrittämisen ELISA-testillä (Enzyme Linked Immunosorbent Assay) tehdä yhtä luotettavasti myös muista kasvinosista (mukula, itu), kuin tällä hetkellä yleisesti käytetystä perunan lehdestä. Idätyskäsittelyn vaikutuksista dormanssin purkautumiseen saatiin vaihtelevia, eikä kovinkaan yleistettäviä tuloksia. Käsittelyn ei myöskään havaittu vaikuttavan PYY-viroottisuuden havaitsemiseen eri näytemateriaaleilla testattaessa. Kun eri kasvinosien toimivuutta testissä vertailtiin, mukulamateriaalin todettiin aliarvioivan PVY-viroottisuutta kaikissa kokeissa. Myös itumateriaali aliarvioi pääsääntöisesti PVY-viroottisuutta ELISA:lla tehdyissä määrityksissä. Luotettavin testimateriaali oli perunan lehti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several orthopoxviruses (OPV) and Borna disease virus (BDV) are enveloped, zoonotic viruses with a wide geographical distribution. OPV antibodies cross-react, and former smallpox vaccination has therefore protected human populations from another OPV infection, rodent-borne cowpox virus (CPXV). Cowpox in humans and cats usually manifests as a mild, self-limiting dermatitis and constitutional symptoms, but it can be severe and even life-threatening in the immunocompromised. Classical Borna disease is a progressive meningoencephalomyelitis in horses and sheep known in central Europe for centuries. Nowadays the virus or its close relative infects humans and also several other species in central Europe and elsewhere, but the existence of human Borna disease with its suspected neuropsychiatric symptoms is controversial. The epidemiology of BDV is largely unknown, and the present situation is even more intriguing following the recent detection of several-million-year-old, endogenized BDV genes in primate and various other vertebrate genomes. The aims of this study were to elucidate the importance of CPXV and BDV in Finland and in possible host species, and particularly to 1) establish relevant methods for the detection of CPXV and other OPVs as well as BDV in Finland, 2) determine whether CPXV and BDV exist in Finland, 3) discover how common OPV immunity is in different age groups in Finland, 4) characterize possible disease cases and clarify their epidemiological context, 5) establish the hosts and possible reservoir species of these viruses and their geographical distribution in wild rodents, and 6) elucidate the infection kinetics of BDV in the bank vole. An indirect immunofluorescence assay and avidity measurement were established for the detection, timing and verification of OPV or BDV antibodies in thousands of blood samples from humans, horses, ruminants, lynxes, gallinaceous birds, dogs, cats and rodents. The mostly vaccine-derived OPV seroprevalence was found to decrease gradually according to the year of birth of the sampled human subjects from 100% to 10% in those born after 1977. On the other hand, OPV antibodies indicating natural contact with CPXV or other OPVs were commonly found in domestic and wild animals: the horse, cow, lynx, dog, cat and, with a prevalence occasionally even as high as 92%, in wild rodents, including some previously undetected species and new regions. Antibodies to BDV were detected in humans, horses, a dog, cats, and for the first time in wild rodents, such as bank voles (Myodes glareolus). Because of the controversy within the human Borna disease field, extra verification methods were established for BDV antibody findings: recombinant nucleocapsid and phosphoproteins were produced in Escherichia coli and in a baculovirus system, and peptide arrays were additionally applied. With these verification assays, Finnish human, equine, feline and rodent BDV infections were confirmed. Taken together, wide host spectra were evident for both OPV and BDV infections based on the antibody findings, and OPV infections were found to be geographically broadly distributed. PCR amplification methods were utilised for hundreds of blood and tissue samples. The methods included conventional, nested and real-time PCRs with or without the reverse transcription step and detecting four or two genes of OPVs and BDV, respectively. OPV DNA could be amplified from two human patients and three bank voles, whereas no BDV RNA was detected in naturally infected individuals. Based on the phylogenetic analyses, the Finnish OPV sequences were closely related although not identical to a Russian CPXV isolate, and clearly different from other CPXV strains. Moreover, the Finnish sequences only equalled each other, but the short amplicons obtained from German rodents were identical to monkeypox virus, in addition to German CPXV variants. This reflects the close relationship of all OPVs. In summary, RNA of the Finnish BDV variant could not be detected with the available PCR methods, but OPV DNA infrequently could. The OPV species infecting the patients of this study was proven to be CPXV, which is most probably also responsible for the rodent infections. Multiple cell lines and some newborn rodents were utilised in the isolation of CPXV and BDV from patient and wildlife samples. CPXV could be isolated from a child with severe, generalised cowpox. BDV isolation attempts from rodents were unsuccessful in this study. However, in parallel studies, a transient BDV infection of cells inoculated with equine brain material was detected, and BDV antigens discovered in archival animal brains using established immunohistology. Thus, based on several independent methods, both CPXV and BDV (or a closely related agent) were shown to be present in Finland. Bank voles could be productively infected with BDV. This experimental infection did not result in notable pathological findings or symptoms, despite the intense spread of the virus in the central and peripheral nervous system. Infected voles commonly excreted the virus in urine and faeces, which emphasises their possible role as a BDV reservoir. Moreover, BDV RNA was regularly reverse transcribed into DNA in bank voles, which was detected by amplifying DNA by PCR without reverse transcription, and verified with nuclease treatments. This finding indicates that BDV genes could be endogenized during an acute infection. Although further transmission studies are needed, this experimental infection demonstrated that the bank vole can function as a potential BDV reservoir. In summary, multiple methods were established and applied in large panels to detect two zoonoses novel to Finland: cowpox virus and Borna disease virus. Moreover, new information was obtained on their geographical distribution, host spectrum, epidemiology and infection kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ihmisen ruuansulatuskanavan bakteeriston kehitys alkaa syntymästä, jolloin ensimmäiset bakteerit kansoittavat steriilin ruuansulatuskanavan. Bakteeristo kehittyy perimän, ympäristön ja varhaisen ruokavalion vaikutuksesta kohti monimuotoisempaa bakteeripopulaatiota. Aikuisen ruuansulatuskanavan normaalibakteeristo on varsin muuttumaton, mutta siihen vaikuttavat monet tekijät, kuten ikä, terveydentila, ruokavalio ja antibioottien käyttö. Bakteeriston koostumus vaihtelee ruuansulatuskanavan eri osissa ja bakteerimäärä kasvaa kohti paksusuolta, ollen paksusuolessa ja ulosteessa peräti 1010-1012 pmy/ml. Suurin osa ruuansulatuskanavan bakteereista on anaerobeja. Ruuansulatuskanavan bakteeristo vaikuttaa muun muassa suoliston kehittymiseen ja hiilihydraattien ja proteiinien hajotukseen sekä toimii osana immuunipuolustusta. Sulfaattia pelkistävät bakteerit (SRB) ovat monimuotoinen ryhmä pääosin anaerobisia bakteereita, jotka käyttävät aineenvaihdunnassaan elektronin vastaanottajana sulfaattia muuttaen sen lopulta sulfidiksi. SRB:t ovat sopeutuneet useisiin erilaisiin ympäristöihin. Niitä tavataan mm. vesistöjen sedimenteissä sekä ihmisen ruuansulatuskanavassa. Ihmisen ruuansulatuskanavassa on SRB:ta n. 105-108 pmy/g, ja niitä on löydetty erityisesti anaerobisista osista kuten suun ientaskuista ja paksusuolesta. SRB:t voivat olla haitaksi ruuansulatuskanavalle tuottamansa sulfidin vuoksi, joka esiintyy vesiliuoksessa vetysulfidina. Tämän on havaittu olevan toksista suoliston epiteelisoluille. Viimeaikoina on kiinnostuttu sulfaatinpelkistäjien yhteydestä suoliston sairaustiloihin, kuten tulehduksellisiin suolistosairauksiin (IBD). Pro gradu -tutkimukseni tavoitteena oli kehittää PCR-DGGE- ja qPCR-menetelmät ulosteen sulfaattia pelkistävien bakteerien määritykseen. Kohdegeeninä menetelmänkehityksessä käytettiin dsrAB-geeniä, joka koodaa dissimilatorista sulfiitinpelkistysentsyymiä. dsrAB-geeni on sulfaatinpelkistäjille ominainen konservoitunut geenialue, johon perustuvia tutkimuksia ei vielä ole paljon ihmispuolelta. qPCR-menetelmä saatiin optimoitua herkäksi ja spesifiseksi käyttäen dsrA-geenispesifisiä alukkeita, mutta PCR-DGGE-menetelmää ei saatu optimoitua käytössä olleilla alukkeilla, jotka monistivat PCR-DGGE:ssa myös negatiivikontrollikantoja. Tutkittaessa qPCR:lla IBD:tä (Crohn ja ulseratiivinen koliitti) sairastavien lasten ja terveiden kontrollihenkilöiden ulostenäytteistä eristettyä DNA:ta, merkittävää eroa SRB-määrissä ei havaittu eri ryhmien välillä. Crohnin tautia sairastavien aktiivisen vaiheen ja oireettoman vaiheen näytteiden välillä oli kuitenkin tilastollisesti merkitsevä ero (SRB-määrät; oireeton vaihe>oireellinen vaihe) (P <0,05).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human-mediated movement of plants and plant products is now generally accepted to be the primary mode of introduction of plant pathogens. Species of the genus Phytophthora are commonly spread in this way and have caused severe epidemics in silviculture, horticulture as well as natural systems all over the world. The aims of the study were to gather information on the occurrence of Phytophthora spp. in Finnish nurseries, to produce information for risk assessments for these Phytophthora spp. by determining their host ranges and tolerance of cold temperatures, and to establish molecular means for their detection. Phytophthora cactorum was found to persist in natural waterbodies and results suggest that irrigation water might be a source of inoculum in nurseries. In addition to P. cactorum, isolates from ornamental nursery Rhododendron yielded three species new to Finland: P. ramorum, P. plurivora and P. pini. The only species with quarantine status, P. ramorum, was most adapted to growth in cold temperatures and able to persist in the nursery in spite of an annual sanitation protocol. Phytophthora plurivora and the closely related P. pini had more hosts among Nordic tree and plant species than P. ramorum and P. cactorum, and also had higher infectivity rates. All four species survived two weeks in -5 °C , and thus soil survival of these Phytophthoras in Finland is likely under current climatic conditions. The most common tree species in Finnish nurseries, Picea abies, was highly susceptible to P. plurivora and P. pini in pathogenicity trials. In a histological examination of P. plurivora in P. abies shoot tissues, fast necrotrophic growth was observed in nearly all tissues. The production of propagules in P. abies shoot tissue was only weakly indicated. In this study, a PCR DGGE technique was developed for simultaneous detection and identification of Phytophthora spp. It reliably detected Phytophthora in plant tissues and could discriminate most test species as well as indicate instances of multiple-species infections. It proved to be a useful detection and identification tool either applied alone or in concert with traditional isolation culture techniques. All of the introduced species of Phytophthora had properties that promote a high risk of establishment and spread in Finland. It is probable that more pathogens of this genus will be introduced and become established in Finland and other Nordic countries unless efficient phytosanitary control becomes standard practice in the international plant trade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human adenoviruses (Ads) have been classified into six species (A to F) currently containing 55 serotypes. For almost 2 decades vectors derived from group C serotype Ad5 have been extensively used for gene transfer studies. These Ad5 based vectors are able to efficiently infect many mammalian cell types (including both mitotic and post-mitotic cells) through interaction with a primary attachment receptor, the coxsackie and adenovirus receptor (CAR). Despite the many advantages of Ad5 based vectors a number of limitations have affected their therapeutic application to many diseases. Although they can transduce many tissue types, Ad5 based vectors are unable to efficiently transduce several potential disease target cell types, including hematopoietic stem cells and malignant tumor cells. Therefore, newer vectors have been developed based on Ad serotypes other than Ad5. This thesis focuses on species B Ads. Species B Ads are comprised of three groups based on their receptor usage. Group 1 of species B Ads (Ad16, 21, 35, 50) nearly exclusively utilize CD46 as a receptor; Group 2 (Ad3, Ad7, 14) share a common, unidentified receptor/s, which is not CD46 and which was tentatively named receptor X; Group 3 (Ad11) preferentially interacts with CD46, but also utilizes receptor X if CD46 is blocked. Species B group Ads are important human pathogens. Species B group 2 serotypes are isolated from patients with respiratory tract infections, whereas the Group 1 viruses are described as causing kidney and urinary tract infections. B-group Ad infections often occur in immunocompromised patients, including AIDS patients, recipients of bone marrow transplants, or chemotherapy patients. Recent studies performed in U.S. military training facilities indicate an emergence of diverse species B serotypes at the majority of sites. This included the group 1 serotype 21 and the group 2 serotypes 3, 7, and 14. CD46-targeting vectors derived from Ad35 and Ad11 are important tools for in vitro gene transfer into human stem cells, including hematopoietic stem cells and induced pluripotent stem cells. Ad35 and Ad11 have been used as tools for cancer therapy, because CD46 appears to be uniformely overexpressed on many cancers. Furthermore, receptor X-targeting vectors, i.e vectors derived from Ad3 or vectors containing Ad3 fibers have shown superior in the transduction of tumor cells both in vitro and in vivo and are currently being used clinically in cancer patients. While extensive basic virology studies have been done on Ad5, the information of species B group 1 interaction with CD46 is limited. Furthermore, the receptor for a major subgroup of species B Ads (receptor X) is unknown. The goal of this thesis was it therefore to better understand virological and translational aspects of species B Ads. The specific findings described in this thesis include i) the identification of CD46 binding sites within the Ad35 fiber knob, ii) the study of the in vitro and in vivo properties of Ad vectors with increased affinity to CD46. iii) the study of the receptor usage of a newly emergent Ad14a, iv) the identification of desmoglein 2 as the receptor for Ad3, Ad7, Ad11, and Ad14, v) the delineation of structural details of Ad3 virus interaction with DSG2, and vi) the analysis of functional consequences of Ad3-DSG2 interaction. As a result of these basic virology studies two Ad-derived recombinant proteins have been generated that can be used to enhance cancer therapy by monoclonal antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.