37 resultados para RAT LUNG IRRADIATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for functional lung imaging was introduced by adapting the K-edge subtraction method (KES) to in vivo studies of small animals. In this method two synchrotron radiation energies, which bracket the K-edge of the contrast agent, are used for simultaneous recording of absorption-contrast images. Stable xenon gas is used as the contrast agent, and imaging is performed in projection or computed tomography (CT) mode. Subtraction of the two images yields the distribution of xenon, while removing practically all features due to other structures, and the xenon density can be calculated quantitatively. Because the images are recorded simultaneously, there are no movement artifacts in the subtraction image. Time resolution for a series of CT images is one image/s, which allows functional studies. Voxel size is 0.1mm3, which is an order better than in traditional lung imaging methods. KES imaging technique was used in studies of ventilation distribution and the effects of histamine-induced airway narrowing in healthy, mechanically ventilated, and anaesthetized rabbits. First, the effect of tidal volume on ventilation was studied, and the results show that an increase in tidal volume without an increase in minute ventilation results a proportional increase in regional ventilation. Second, spiral CT was used to quantify the airspace volumes in lungs in normal conditions and after histamine aerosol inhalation, and the results showed large patchy filling defects in peripheral lungs following histamine provocation. Third, the kinetics of proximal and distal airway response to histamine aerosol were examined, and the findings show that the distal airways react immediately to histamine and start to recover, while the reaction and the recovery in proximal airways is slower. Fourth, the fractal dimensions of lungs was studied, and it was found that the fractal dimension is higher at the apical part of the lungs compared to the basal part, indicating structural differences between apical and basal lung level. These results provide new insights to lung function and the effects of drug challenge studies. Nowadays the technique is available at synchrotron radiation facilities, but the compact synchrotron radiation sources are being developed, and in relatively near future the method may be used at hospitals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lung cancer accounts for more cancer-related deaths than any other cancer. In Finland, five-year survival ranges from 8% to 13%. The main risk factor for lung cancer is long-term cigarette smoking, but its carcinogenesis requires several other factors. The aim of the present study was to 1) evaluate post-operative quality of life, 2) compare clinical outcomes between minimally invasive and conventional open surgery, 3) evaluate the role of oxidative stress in the carcinogenesis of non-small lung cancer (NSCLC), and 4) to identify and characterise targeted agents for therapeutic and diagnostic use in surgery. For study I, pneumonectomy patients replied to 15D quality of life and baseline dyspnea questionnaires. Study III involved a prospective quality of life assessment using the 15D questionnaire after lobectomy or bi-lobectomy. Study IV was a retrospective comparison of clinical outcomes between 212 patients treated with open thoracotomy and 116 patients who underwent a minimally invasive technique. Study II measured parameters of oxidative metabolism (myeloperoxidase activity, glutathione content and NADPH oxidase activity) and DNA adducts. Study V employed the phage display method and identified a core motif for homing peptides. This method served in cell-binding, cell-localisation, and biodistribution studies. Following both pneumonectomy and lobectomy, NSCLC patients showed significantly decreased long-term quality of life. No significant correlation was noted between post-operative quality of life and pre-operative pulmonary function tests. Women suffered more from increased dyspnea after pneumonectomy which was absent after lobectomy or bi-lobectomy. Patients treated with video-assisted thoracoscopy showed significantly decreased morbidity and shorter periods of hospitalization than did open surgery patients. This improvement was achieved even though the VATS patients were older and suffered more comorbid conditions and poorer pulmonary function. No significant differences in survival were noted between these two groups. An increase in NADPH oxidase activity was noted in tumour samples of both adenocarcinoma and squamous cell carcinoma. This increase was independent from myeloperoxidase activity. Elevated glutathione content was noted in tumour tissue, especially in adenocarcinoma. After panning the clinical tumour samples with the phage display method, an amino acid sequence of ARRPKLD, the Thx, was chosen for further analysis. This method proved selective of tumour tissue in both in vitro and in vivo cell-binding assay, and biodistribution showed tumour accumulation. Because of the significantly reduced quality of life following pneumonectomy, other operative strategies should be implemented as an alternative (e.g. sleeve-lobectomy). To treat this disease, implementation of a minimally invasive surgical technique is safe, and the results showed decreased morbidity and a shorter period of hospitalisation than with thoracotomy. This technique may facilitate operative treatment of elderly patients with comorbid conditions who might otherwise be considered inoperable. Simultaneous exposure to oxidative stress and altered redox states indicates the important role of oxidative stress in the pathogenesis and malignant transformation of NSCLC. The studies showed with great specificity and with favourable biodistribution that Thx peptide is specific to NSCLC tumours. Thx thus shows promise in imaging, targeted therapy, and monitoring of treatment response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many countries, the prevalence of smoking and smokers average cigarette consumption have decreased, with occasional smoking and daily light smoking (1-4 cigarettes per day, CPD) becoming more common. Despite these changes in smoking patterns, the prevalence of chronic obstructive pulmonary disease (COPD), a disorder characterized by a progressive decline in lung function, continues to rise globally. Smoking is the most important factor causing COPD, however, not all smokers develop the disease. Genetic factors partly explain the inter-individual differences in lung function and susceptibility of some smokers to COPD. No earlier research on the genetic and environmental determinants of lung function or on the phenomenon of light smoking exists in the Finnish population. Further, the association between low-rate smoking patterns and COPD remains partly unknown. This thesis aimed to study the prevalence and consistency of light smoking longitudinally in the Finnish population, to assess the characteristics of light smokers, and to examine the risks of chronic bronchitis and COPD associated with changing smoking patterns over time. A further aim was to estimate longitudinally the proportions of genetic and environmental factors that explain the inter-individual variances in lung function. Data from the Older Finnish Twin Cohort, including same-sex twin pairs born in Finland before 1958, were used. Smoking patterns and chronic bronchitis symptoms were consistently assessed in surveys conducted in 1975, 1981, and 1990. National registry data on reimbursement eligibilities and medication purchases were used to define COPD. Lung function data were obtained from a subsample of the cohort, 217 female twin pairs, who attended spirometry in 2000 and 2003 as part of the Finnish Twin Study on Ageing. The genetic and environmental influences on lung function were estimated by using genetic modeling. This thesis found that light smokers are more often female, well-educated, and exhibit a healthier lifestyle than heavy smokers. At individual level, light smoking is rarely a constant pattern. Light smoking, reducing from heavier smoking to light smoking, and relapsing to light smoking after quitting, are among patterns associated with an increased risk of chronic bronchitis and COPD. Constant light smoking is associated with an increased use of inhaled anticholinergics, a medication for CODP. In addition to smoking, other environmental factors influence lung function in the older age. During a three-year follow-up, new environmental effects influencing spirometry values were observed, whereas the genes affecting lung function remained mostly the same. In conclusion, no safe level of daily smoking exists with regard to pulmonary diseases. Even daily light smoking in middle-age is associated with increased respiratory morbidity later in life. Smoking reduction does not decrease the risk of COPD, and should not be recommended as an alternative to quitting smoking. In elderly people, attention should also be drawn to other factors that can prevent poor lung function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic obstructive pulmonary disease (COPD) is a slowly progressive disease characterized by airway inflammation and largely irreversible airflow limitation. One major risk factor for COPD is cigarette smoking. Since the inflammatory process starts many years prior to the onset of clinical symptoms and still continues after smoking cessation, there is an urgent need to find simple non-invasive biomarkers that can be used in the early diagnosis of COPD and which could help in predicting the disease progression. The first aim of the present study was to evaluate the involvement of different oxidative/nitrosative stress markers, matrix metalloproteinases (MMPs) and their tissue inhibitor-1 (TIMP-1) in smokers and in COPD. Elevated numbers of inducible nitric oxide synthase (iNOS), nitrotyrosine, myeloperoxidase (MPO) and 4-hydroxy-2-nonenal (4-HNE) positive cells and increased levels of 8-isoprostane and lactoferrin were found in sputum of non-symptomatic smokers compared to non-smokers, and especially in subjects with stable mild to moderate COPD, and they correlated with the severity of airway obstruction. This suggests that an increased oxidant burden exists already in the airways of smokers with normal lung function values. However, none of these markers could differentiate healthy smokers from symptomatic smokers with normal lung function values i.e. those individuals who are at risk of developing COPD. In contrast what is known about asthma exhaled nitric oxide (FENO) was lower in smokers than in non-smokers, the reduced FENO value was significantly associated with neutrophilic inflammation and the elevated oxidant burden (positive cells for iNOS, nitrotyrosine and MPO). The levels of sputum MMP-8 and plasma MMP-12 appeared to differentiate subjects who have a risk for COPD development but these finding require further investigations. The levels of all studied MMPs correlated with the numbers of neutrophils, and MMP-8 and MMP-9 with markers of neutrophil activation (MPO, lactoferrin) suggesting that especially neutrophil derived oxidants may stimulate the tissue destructive MMPs already in lungs of smokers who are not yet experiencing any airflow limitation. When investigating the role of neutrophil proteases (neutrophil elastase, MMP-8, MMP-9) during COPD exacerbation and its recovery period, we found that levels of all these proteases were increased in sputum of patients with COPD exacerbation as compared to stable COPD and controls, and decreased during the one-month recovery period, giving evidence for a role of these enzymes in COPD exacerbations. In the last study, the effects of subject`s age and smoking habits were evaluated on the plasma levels of surfactant protein A (SP-A), SP-D, MMP-9 and TIMP-1. Long-term smoking increased the levels of all of these proteins. SP-A most clearly correlated with age, pack years and lung function decline (FEV1/FVC), and based on the receiver operating characteristic curve analysis, SP-A was the best marker for discriminating subjects with COPD from controls. In conclusion, these findings support the hypothesis that especially neutrophil derived oxidants may activate MMPs and induce an active remodeling process already in the lungs of smokers with normal lung function values. The marked increase of sputum levels of neutrophil proteases in smokers, stable COPD and/or during its exacerbations suggest that these enzymes play a role in the development and progression of COPD. Based on the comparison of various biomarkers, SP-A can be proposed to serve as sensitive biomarker in COPD development.