35 resultados para PROCESSING
Resumo:
Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.
Resumo:
Powders are essential materials in the pharmaceutical industry, being involved in majority of all drug manufacturing. Powder flow and particle size are central particle properties addressed by means of particle engineering. The aim of the thesis was to gain knowledge on powder processing with restricted liquid addition, with a primary focus on particle coating and early granule growth. Furthermore, characterisation of this kind of processes was performed. A thin coating layer of hydroxypropyl methylcellulose was applied on individual particles of ibuprofen in a fluidised bed top-spray process. The polymeric coating improved the flow properties of the powder. The improvement was strongly related to relative humidity, which can be seen as an indicator of a change in surface hydrophilicity caused by the coating. The ibuprofen used in the present study had a d50 of 40 μm and thus belongs to the Geldart group C powders, which can be considered as challenging materials in top-spray coating processes. Ibuprofen was similarly coated using a novel ultrasound-assisted coating method. The results were in line with those obtained from powders coated in the fluidised bed process mentioned above. It was found that the ultrasound-assisted method was capable of coating single particles with a simple and robust setup. Granule growth in a fluidised bed process was inhibited by feeding the liquid in pulses. The results showed that the length of the pulsing cycles is of importance, and can be used to adjust granule growth. Moreover, pulsed liquid feed was found to be of greater significance to granule growth in high inlet air relative humidity. Liquid feed pulsing can thus be used as a tool in particle size targeting in fluidised bed processes and in compensating for changes in relative humidity of the inlet air. The nozzle function of a two-fluid external mixing pneumatic nozzle, typical for small scale pharmaceutical fluidised bed processes, was studied in situ in an ongoing fluidised bed process with particle tracking velocimetry. It was found that the liquid droplets undergo coalescence as they proceed away from the nozzle head. The coalescence was expected to increase droplet speed, which was confirmed in the study. The spray turbulence was studied, and the results showed turbulence caused by the event of atomisation and by the oppositely directed fluidising air. It was concluded that particle tracking velocimetry is a suitable tool for in situ spray characterisation. The light transmission through dense particulate systems was found to carry information on particle size and packing density as expected based on the theory of light scattering by solids. It was possible to differentiate binary blends consisting of components with differences in optical properties. Light transmission showed potential as a rapid, simple and inexpensive tool in characterisation of particulate systems giving information on changes in particle systems, which could be utilised in basic process diagnostics.
Resumo:
The representation of morphologically complex words in the mental lexicon and their neurocognitive processing has been a vigorously debated topic in psycholinguistics and the cognitive neuroscience of language. This thesis investigates the effect of stimulus modality on morphological processing, the spatiotemporal dynamics of the neural processing of inflected (e.g., work+ed ) and derived (e.g., work+er ) words and their interaction, using the Finnish language. Overall, the results suggest that the constituent morphemes of isolated written and spoken inflected words are accessed separately, whereas spoken derived words activate both their full form and the constituent morphemes. The processing of both spoken and written inflected words elicited larger N400 responses than monomorphemic words (Study I), whereas the responses to spoken derived words did not differ from those to monomorphemic words (Study IV). Spoken inflected words elicited a larger left-lateralized negativity and greater source strengths in the left temporal cortices than derived words (Study IV). Thus, the results suggest different cortical processing for derived and inflected words. Moreover, the neural mechanisms underlying inflection and derivation seem to be not only different, but also independent as indexed by the linear summation of the responses to derived and inflected stimuli in a combined (derivation+inflection) condition (Study III). Furthermore, the processing of meaningless, spoken derived pseudowords was more difficult than for existing derived words, indexed by a larger N400-type effect for the pseudowords. However, no differences were observed between meaningful derived pseudowords and existing derived words (Study II). The results of Study II suggest that semantic compatibility between morphemes seems to have a crucial role in a successful morphological analysis. As a methodological note, time-locking the auditory event-related potentials/fields (ERP/ERF) to the suffix onset revealed the processes related to morphological analysis more precisely (Studies II and IV), which also enables comparison of the neural processes in different modalities (Study I).
Resumo:
Asperger Syndrome (AS) belongs to autism spectrum disorders where both verbal and non-verbal communication difficulties are at the core of the impairment. Social communication requires a complex use of affective, linguistic-cognitive and perceptual processes. In the four studies included in the current thesis, some of the linguistic and perceptual factors that are important for face-to-face communication were studied using behavioural methods. In all four studies the results obtained from individuals with AS were compared with typically developed age, gender and IQ matched controls. First, the language skills of school-aged children were characterized in detail with standardized tests that measured different aspects of receptive and expressive language (Study I). The children with AS were found to be worse than the controls in following complex verbal instructions. Next, the visual perception of facial expressions of emotion with varying degrees of visual detail was examined (Study II). Adults with AS were found to have impaired recognition of facial expressions on the basis of very low spatial frequencies which are important for processing global information. Following that, multisensory perception was investigated by looking at audiovisual speech perception (Studies III and IV). Adults with AS were found to perceive audiovisual speech qualitatively differently from typically developed adults, although both groups were equally accurate in recognizing auditory and visual speech presented alone. Finally, the effect of attention on audiovisual speech perception was studied by registering eye gaze behaviour (Study III) and by studying the voluntary control of visual attention (Study IV). The groups did not differ in eye gaze behaviour or in the voluntary control of visual attention. The results of the study series demonstrate that many factors underpinning face-to-face social communication are atypical in AS. In contrast with previous assumptions about intact language abilities, the current results show that children with AS have difficulties in understanding complex verbal instructions. Furthermore, the study makes clear that deviations in the perception of global features in faces expressing emotions as well as in the multisensory perception of speech are likely to harm face-to-face social communication.