41 resultados para Nuclear fuel elements.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eukaryotic cell nucleoplasm is separated from the cytoplasm by the nuclear envelope. This compartmentation of eukaryotic cells requires that all nuclear proteins must be transported from the cytoplasm into the nucleus. Transport of macromolecules between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). Proteins to be targeted into the nucleus by the classical nuclear import system contain nuclear localization signals (NLSs), which are recognized by importin alpha, the NLS receptor. Importin alpha binds to importin beta, which docks the importin-cargo complex on the cytoplasmic side of the NPC and mediates the movement of the complex into the nucleus. Presently six human importin alpha isoforms have been identified. Transcription factors are among the most important regulators of gene expression in eukaryotic organisms. Transcription factors bind to specific DNA sequences on target genes and modulate the activity of the target gene. Many transcription factors, including signal transducers and activators of transcription (STAT) and nuclear factor kB (NF-kB), reside in the cytoplasm in an inactive form, and upon activation they are rapidly transported into the nucleus. In the nucleus STATs and NF-kB regulate the activity of genes whose products are critical in controlling numerous cellular and organismal processes, such as inflammatory and immune responses, cell growth, differentiation and survival. The aim of this study was to investigate the nuclear import mechanisms of STAT and NF-kB transcription factors. This work shows that STAT1 homodimers and STAT1/STAT2 heterodimers bind specifically and directly to importin alpha5 molecule via unconventional dimer-specific NLSs. Importin alpha molecules have two regions, which have been shown to directly interact with the amino acids in the NLS of the cargo molecule. The Arm repeats 2-4 comprise the N-terminal NLS binding site and Arm repeats 7-8 the C-terminal NLS binding site. In this work it is shown that the binding site for STAT1 homodimers and STAT1/STAT2 heterodimers is composed of Arm repeats 8 and 9 of importin alpha5 molecule. This work demonstrates that all NF-kB proteins are transported into the nucleus by importin alpha molecules. In addition, NLS was identified in RelB protein. The interactions between NF-kB proteins and importin alpha molecules were found to be directly mediated by the NLSs of NF-kB proteins. Moreover, we found that p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. The results from this thesis work identify previously uncharacterized mechanisms in nuclear import of STAT and NF-kB. These findings provide new insights into the molecular mechanisms regulating the signalling cascades of these important transcription factors from the cytoplasm into the nucleus to the target genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main method of modifying properties of semiconductors is to introduce small amount of impurities inside the material. This is used to control magnetic and optical properties of materials and to realize p- and n-type semiconductors out of intrinsic material in order to manufacture fundamental components such as diodes. As diffusion can be described as random mixing of material due to thermal movement of atoms, it is essential to know the diffusion behavior of the impurities in order to manufacture working components. In modified radiotracer technique diffusion is studied using radioactive isotopes of elements as tracers. The technique is called modified as atoms are deployed inside the material by ion beam implantation. With ion implantation, a distinct distribution of impurities can be deployed inside the sample surface with good con- trol over the amount of implanted atoms. As electromagnetic radiation and other nuclear decay products emitted by radioactive materials can be easily detected, only very low amount of impurities can be used. This makes it possible to study diffusion in pure materials without essentially modifying the initial properties by doping. In this thesis a modified radiotracer technique is used to study the diffusion of beryllium in GaN, ZnO, SiGe and glassy carbon. GaN, ZnO and SiGe are of great interest to the semiconductor industry and beryllium as a small and possibly rapid dopant hasn t been studied previously using the technique. Glassy carbon has been added to demonstrate the feasibility of the technique. In addition, the diffusion of magnetic impurities, Mn and Co, has been studied in GaAs and ZnO (respectively) with spintronic applications in mind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation.

Results
Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona fide mutagen.

Conclusions
We hypothesize that TE dynamics could promote or intensify morphological and karyotypical changes, some of which may be potentially important for the process of microevolution, and allow species with plastic genomes to survive as new forms or even species in times of rapid climatic change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the existing research within the business network approach is based on companies that are operating on different levels within the same value chain, as a buyer and a supplier. Intercompetitor cooperation, i.e. cooperation between companies occupying the same level within different value chains, has not been studied to the same extent. Moreover scholars within the business network approach have usually described industrial relationships as long term, consisting of mutual commitment and trust. Industrial relationships are not static, but dynamic, and they contain situations of both harmony and conflict. There is consequently a need for more research both concerning intercompetitor cooperation and conflicts. The purpose of this study is to develop our theoretical and empirical understanding of the nature of conflicts in intercompetitor cooperation from a business network perspective. The focus of the study lies on issue and intensity of conflict. The issue of a conflict can be divided into cause and topic, while the intensity comprises the importance and outcome of a conflict. The empirical part of the study is based on two case studies of groups of cooperating competitors from two different industries. The applied research method is interviews. According to the findings of this study causes of conflicts in intercompetitor cooperation can be divided into three groups: focus, awareness and capacity. Topics of conflict can be related to domain, delivery, advertising or cooperation. Moreover the findings show that conflict situations may be grouped into not important, important or very important. Some conflicts may also be of varying importance, meaning that the importance varies from one point of time to another. Based on the findings of the study the outcome or status of a conflict can be analyzed both on a concrete and general level. The findings also indicate that several conflicts are partly hidden, which means that only one or some of the involved actors perceive the conflict. Furthermore several conflict situations can be related to external network actors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear receptors (NRs) comprise a large family of proteins that mediate the effects of small lipophilic molecules such as steroid hormones. In addition, there are a group of NRs which lack identified natural ligands and are referred as orphan NRs. In this thesis, the function of two such orphan NR families, the NR3B (ERRα, ERRβ and ERRγ) and the NR4A family (NGFI-B, Nurr1 and Nor1), was studied. NR3B and NR4A receptors regulate many biological processes such as energy metabolism and carcinogenesis. In addition, NR3B and NR4A receptors are expressed in bone. Therefore, the signaling and function of NR3B and NR4A orphan nuclear receptors was studied specifically in osteoblasts. NR4A receptors were found to be regulated by NR3B receptors and the Wnt/β-catenin signaling pathway as ERRα, ERRγ and β-catenin repressed the transcriptional activity of NR4A receptors in U2-OS cells. NGFI-B was found to repress the transcriptional activity of ERRγ in HeLa cells. The phytoestrogen equol was identified as a new agonist for ERRγ and ERRβ in PC-3, U2-OS, and SaOS-2 cells. Equol increased the transcriptional activity of ERRγ by increasing ERRγ co-activator binding and by inducing a conformational change in the ligand binding pocket of ERRγ. The growth inhibitory effect of equol on PC-3 prostate cancer cells was decreased by blocking ERRγ expression by siRNA. Therefore, ERRγ could mediate some of the beneficial health effects of equol. The Wnt/β-catenin signaling pathway is important for the differentiation and function of osteoblasts. NR3B and NR4A receptors were found to repress the transcriptional activity mediated by β-catenin in U2-OS cells. The mesenchymal stem cells (MSCs) isolated from ERRα knockout (KO) mice showed diminished proliferation and osteoblastic differentiation compared to the wild-type cells. The overexpression of ERRα in osteoblastic MC3T3-E1 cell line increased their mineralization. Bone sialoprotein (BSP) was shown to be a direct target gene for ERRα and ERRγ as the BSP promoter was activated by ERRα or ERRγ and PGC-1α in HeLa cells. The adipogenic differentiation of ERRα KO MSCs was also decreased and they expressed less adipogenic marker genes. In conclusion, the studies described in this thesis demonstrated that the transcriptional activity of NR3B and NR4A receptors can be regulated by other orphan NRs and signaling pathways in osteoblasts. NR3B receptors can also be regulated by ligands and a new agonist, equol, was identified for ERRβ and ERRγ. New roles for NR3B and NR4A were also identified as they were shown to converge with the Wnt signaling pathway in osteoblasts, ERRγ was shown to mediate the growth inhibitory effect of equol in prostate cancer cells, and ERRα was shown to regulate positively MSC proliferation, osteoblastic differentiation and adipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K-shell diagram (K alpha(1,2) and K beta(1,3)) and hypersatellite (HS) (K-h alpha(1,2)) spectra of Y, Zr, Mo, and Pd have been measured with high energy-resolution using photoexcitation by 90 keV synchrotron radiation. Comparison of the measured and ab initio calculated HS spectra demonstrates the importance of quantum electrodynamical (QED) effects for the HS spectra. Phenomenological fits of the measured spectra by Voigt functions yield accurate values for the shift of the HS from the diagram lines, the splitting of the HS lines, and their intensity ratio. Good agreement with theory was found for all quantities except for the intensity ratio, which is dominated by the intermediacy of the coupling of the angular momenta. The observed deviations imply that our current understanding of the variation of the coupling scheme from LS to jj across the periodic table may require some revision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The removal of noncoding sequences, or introns, from the eukaryotic messenger RNA precursors is catalyzed by a ribonucleoprotein complex known as the spliceosome. In most eukaryotes, two distinct classes of introns exist, each removed by a specific type of spliceosome. The major, U2-type introns account for over 99 % of all introns, and are almost ubiquitous. The minor, U12-type introns are found in most but not all eukaryotes, and reside in conserved locations in a specific set of genes. Due to their slow excision rates, the U12-type introns are expected to be involved in the regulation of the genes containing them by inhibiting the maturation of the messenger RNAs. However, little information is currently available on how the activity of the U12-dependent spliceosome itself is regulated. The levels of many known splicing factors are regulated through unproductive alternative splicing events, which lead to inclusion of premature STOP codons, targeting the transcripts for destruction by the nonsense-mediated decay pathway. These alternative splice sites are typically found in highly conserved sequence elements, which also contain binding sites for factors regulating the activation of the splice sites. Often, the activation is achieved by binding of products of the gene in question, resulting in negative feedback loops. In this study, I show that U11-48K, a protein factor specific to the minor spliceosome, specifically recognizes the U12-type 5' splice site sequence, and is essential for proper function of the minor spliceosome. Furthermore, the expression of U11-48K is regulated through a feedback mechanism, which functions through conserved sequence elements that activate alternative splicing and nonsense-mediated decay. This mechanism is conserved from plants to animals, highlighting both the importance and early origin of this mechanism in regulating splicing factors. I also show that the feedback regulation of U11-48K is counteracted by a component of the major spliceosome, the U1 small nuclear ribonucleoprotein particle, as well as members of the hnRNP F/H protein family. These results thus suggest that the feedback mechanism is finely tuned by multiple factors to achieve precise control of the activity of the U12-dependent spliceosome.