54 resultados para Intrusions (Geology)
Resumo:
A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q´ and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q´, fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of the repository at all three scales. The HRC-system is, thereby, one possible design tool that aids in locating the different repository components into volumes of host rock that are more suitable than others and that are considered to fulfil the fundamental requirements set for the repository host rock. The generic HRC-system, which is the main result of this work, is also adjusted to the site-specific properties of the Olkiluoto site in Finland and the classification procedure is demonstrated by a test classification using data from Olkiluoto. Keywords: host rock, classification, HRC-system, nuclear waste disposal, long-term safety, constructability, KBS-3V, crystalline bedrock, Olkiluoto
Resumo:
This thesis summarises the results of four original papers concerning U-Pb geochronology and geochemical evolution of Archaean rocks from the Kuhmo terrain and the Nurmes belt, eastern Finland. The study area belongs to a typical Archaean granite-greenstone terrain, composed of metavolcanic and metasedimentary rocks in generally N-S trending greenstone belts as well as a granitoid-gneiss complex with intervening gneissic and migmatised supracrustal and plutonic rocks. U-Pb data on migmatite mesosomes indicate that the crust surrounding the Tipasjärvi-Kuhmo-Suomussalmi greenstone belt is of varying age. The oldest protolith detected for a migmatite mesosome from the granitoid-gneiss complex is 2.94 Ga, whereas the other dated migmatites protoliths have ages of 2.84 2.79 Ga. The latter protoliths are syngenetic with the majority of volcanic rocks in the adjacent Tipasjärvi-Kuhmo-Suomussalmi greenstone belt. This suggests that the genesis of some of the volcanic rocks within the greenstone belt and surrounding migmatite protoliths could be linked. Metamorphic zircon overgrowths with ages of 2.84 2.81 Ga were also obtained. The non-migmatised plutonic rocks in the Kuhmo terrain and in the Nurmes belt record secular geochemical evolution, typical of Archaean cratons. The studied tonalitic rocks have ages of 2.83 2.75 Ga and they have geochemical characteristics similar to low-Al and high-Al TTD (tonalite-trondhjemite-dacite). The granodiorites, diorites, and gabbros with high Mg/Fe and LILE-enriched characteristics were mostly emplaced between 2.74 2.70 Ga and they exhibit geochemical characteristics typical of Archaean sanukitoid suites. The latest identified plutonic episode took place at 2.70 2.68 Ga, when compositionally heterogeneous leucocratic granitoid rocks, with a variable crustal component, were emplaced. U-Pb data on migmatite leucosomes suggest that leucosome generation may have been coeval with this latest plutonic event. On the basis of available U-Pb and Sm-Nd isotopic data it appears that the plutonic rocks of the Kuhmo terrain and the Nurmes belt do not contain any significant input from Palaeoarchaean sources. A characteristic feature of the Nurmes belt is the presence of migmatised paragneisses, locally preserving primary edimentary structures, with sporadic amphibolite intercalations. U-Pb studies on zircons indicate that the precursors of the Nurmes paragneisses were graywackes that were deposited between 2.71 Ga and 2.69 Ga and that they had a prominent 2.75 2.70 Ga source. Nd isotopic and whole-rock geochemical data for the intercalated amphibolites imply MORB sources. U-Pb data on zircons from the plutonic rocks and paragneisses reveal that metamorphic zircon growth took place at 2.72 2.63 Ga. This was the last tectonothermal event related to cratonisation of the Archaean crust of eastern Finland.
Resumo:
Olkiluoto Island is situated in the northern Baltic Sea, near the southwestern coast of Finland, and is the proposed location of a spent nuclear fuel repository. This study examined Holocene palaeoseismicity in the Olkiluoto area and in the surrounding sea areas by computer simulations together with acoustic-seismic, sedimentological and dating methods. The most abundant rock type on the island is migmatic mica gneiss, intruded by tonalites, granodiorites and granites. The surrounding Baltic Sea seabed consists of Palaeoproterozoic crystalline bedrock, which is to a great extent covered by younger Mesoproterozoic sedimentary rocks. The area contains several ancient deep-seated fracture zones that divide it into bedrock blocks. The response of bedrock at the Olkiluoto site was modelled considering four future ice-age scenarios. Each scenario produced shear displacements of fractures with different times of occurrence and varying recovery rates. Generally, the larger the maximum ice load, the larger were the permanent shear displacements. For a basic case, the maximum shear displacements were a few centimetres at the proposed nuclear waste repository level, at proximately 500 m b.s.l. High-resolution, low-frequency echo-sounding was used to examine the Holocene submarine sedimentary structures and possible direct and indirect indicators of palaeoseismic activity in the northern Baltic Sea. Echo-sounding profiles of Holocene submarine sediments revealed slides and slumps, normal faults, debris flows and turbidite-type structures. The profiles also showed pockmarks and other structures related to gas or groundwater seepages, which might be related to fracture zone activation. Evidence of postglacial reactivation in the study area was derived from the spatial occurrence of some of the structures, especial the faults and the seepages, in the vicinity of some old bedrock fracture zones. Palaeoseismic event(s) (a single or several events) in the Olkiluoto area were dated and the palaeoenvironment was characterized using palaeomagnetic, biostratigraphical and lithostratigraphical methods, enhancing the reliability of the chronology. Combined lithostratigraphy, biostratigraphy and palaeomagnetic stratigraphy revealed an age estimation of 10 650 to 10 200 cal. years BP for the palaeoseismic event(s). All Holocene sediment faults in the northern Baltic Sea occur at the same stratigraphical level, the age of which is estimated at 10 700 cal. years BP (9500 radiocarbon years BP). Their movement is suggested to have been triggered by palaeoseismic event(s) when the Late Weichselian ice sheet was retreating from the site and bedrock stresses were released along the bedrock fracture zones. Since no younger or repeated traces of seismic events were found, it corroborates the suggestion that the major seismic activity occurred within a short time during and after the last deglaciation. The origin of the gas/groundwater seepages remains unclear. Their reflections in the echo-sounding profiles imply that part of the gas is derived from the organic-bearing Litorina and modern gyttja clays. However, at least some of the gas is derived from the bedrock. Additional information could be gained by pore water analysis from the pockmarks. Information on postglacial fault activation and possible gas and/or fluid discharges under high hydraulic heads has relevance in evaluating the safety assessment of a planned spent nuclear fuel repository in the region.
Resumo:
Nisäkkäiden levinneisyyteen, niiden morfologisiin ja ekologisiin piirteisiin vaikuttavat ympäristön sekä lyhyet että pitkäkestoiset muutokset, etenkin ilmaston ja kasvillisuuden vaihtelut. Työssä tutkittiin nisäkkäiden sopeutumista ilmastonmuutoksiin Euraasiassa viimeisen 24 miljoonan vuoden aikana. Tutkimuksessa keskityttiin varsinkin viimeiseen kahteen miljoonaan vuoteen, jonka aikana ilmasto muuttui voimakkaasti ja ihmisen toiminta alkoi tulla merkittäväksi. Tämän takia on usein vaikea erottaa, kummasta em. seikasta jonkin nisäkäslajin sukupuutto tai häviäminen alueelta johtui. Aineistona käytettiin laajaa venäjänkielistä kirjallisuutta, josta löytyvät tiedot ovat kääntämättöminä jääneet aiemmin länsimaisen tutkimuksen ulkopuolelle. Työssä käytettiin myös NOW-tietokantaa, jossa on fossiilisten nisäkkäiden löytöpaikat sekä niiden iät.
Resumo:
Being at the crossroads of the Old World continents, Western Asia has a unique position through which the dispersal and migration of mammals and the interaction of faunal bioprovinces occurred. Despite its critical position, the record of Miocene mammals in Western Asia is sporadic and there are large spatial and temporal gaps between the known fossil localities. Although the development of the mammalian faunas in the Miocene of the Old World is well known and there is ample evidence for environmental shifts in this epoch, efforts toward quantification of habitat changes and development of chronofaunas based on faunal compositions were mostly neglected. Advancement of chronological, paleoclimatological, and paleogeographical reconstruction tools and techniques and increased numbers of new discoveries in recent decades have brought the need for updating and modification of our level of understanding. We under took fieldwork and systematic study of mammalian trace and body fossils from the northwestern parts of Iran along with analysis of large mammal data from the NOW database. The data analysis was used to study the provinciality, relative abundance, and distribution history of the closed- and open-adapted taxa and chronofaunas in the Miocene of the Old World and Western Asia. The provinciality analysis was carried out, using locality clustering, and the relative abundance of the closed- and open-adapted taxa was surveyed at the family level. The distribution history of the chronofaunas was studied, using faunal resemblance indices and new mapping techniques, together with humidity analysis based on mean ordinated hypsodonty. Paleoichnological studies revealed the abundance of mammalian footprints in several parts of the basins studied, which are normally not fossiliferous in terms of body fossils. The systematic study and biochronology of the newly discovered mammalian fossils in northwestern Iran indicates their close affinities with middle Turolian faunas. Large cranial remains of hipparionine horses, previously unknown in Iran and Western Asia, are among the material studied. The initiation of a new field project in the famous Maragheh locality also brings new opportunities to address questions regarding the chronology and paleoenvironment of this classical site. Provinciality analysis modified our previous level of understandings, indicating the interaction of four provinces in Western Asia. The development of these provinces was apparently due to the presence of high mountain ranges in the area, which affected the dispersal of mammals and also climatic patterns. Higher temperatures and possibly higher co2 levels in the Middle Miocene Climatic Optimum apparently favored the development of the closed forested environments that supported the dominance of the closed-adapted taxa. The increased seasonality and the progressive cooling and drying of the midlatitudes toward the Late Miocene maintained the dominance of open-adapted faunas. It appears that the late Middle Miocene was the time of transition from a more forested to a less forested world. The distribution history of the closed- and open-adapted chronofaunas shows the presence of cosmopolitan and endemic faunas in Western Asia. The closed-adapted faunas, such as the Arabian chronofauna of the late Early‒early Middle Miocene, demonstrated a rapid buildup and gradual decline. The open-adapted chronofaunas, such as the Late Miocene Maraghean fauna, climaxed gradually by filling the opening environments and moving in response to changes in humidity patterns. They abruptly declined due to demise of their favored environments. The Siwalikan chronofauna of the early Late Miocene remained endemic and restricted through all its history. This study highlights the importance of field investigations and indicates that new surveys in the vast areas of Western Asia, which are poorly sampled in terms of fossil mammal localities, can still be promising. Clustering of the localities supports the consistency of formerly known patterns and augments them. Although the quantitative approach to relative abundance history of the closed- and open-adapted mammals harks back to more than half a century ago, it is a novel technique providing robust results. Tracking the history of the chronofaunas in space and time by means of new computational and illustration methods is also a new practice that can be expanded to new areas and time spans.
Resumo:
In Finland one of the most important current issues in the environmental management is the quality of surface waters. The increasing social importance of lakes and water systems has generated wide-ranging interest in lake restoration and management, concerning especially lakes suffering from eutrophication, but also from other environmental impacts. Most of the factors deteriorating the water quality in Finnish lakes are connected to human activities. Especially since the 1940's, the intensified farming practices and conduction of sewage waters from scattered settlements, cottages and industry have affected the lakes, which simultaneously have developed in to recreational areas for a growing number of people. Therefore, this study was focused on small lakes, which are human impacted, located close to settlement areas and have a significant value for local population. The aim of this thesis was to obtain information from lake sediment records for on-going lake restoration activities and to prove that a well planned, properly focused lake sediment study is an essential part of the work related to evaluation, target consideration and restoration of Finnish lakes. Altogether 11 lakes were studied. The study of Lake Kaljasjärvi was related to the gradual eutrophication of the lake. In lakes Ormajärvi, Suolijärvi, Lehee, Pyhäjärvi and Iso-Roine the main focus was on sediment mapping, as well as on the long term changes of the sedimentation, which were compared to Lake Pääjärvi. In Lake Hormajärvi the role of different kind of sedimentation environments in the eutrophication development of the lake's two basins were compared. Lake Orijärvi has not been eutrophied, but the ore exploitation and related acid main drainage from the catchment area have influenced the lake drastically and the changes caused by metal load were investigated. The twin lakes Etujärvi and Takajärvi are slightly eutrophied, but also suffer problems associated with the erosion of the substantial peat accumulations covering the fringe areas of the lakes. These peat accumulations are related to Holocene water level changes, which were investigated. The methods used were chosen case-specifically for each lake. In general, acoustic soundings of the lakes, detailed description of the nature of the sediment and determinations of the physical properties of the sediment, such as water content, loss on ignition and magnetic susceptibility were used, as was grain size analysis. A wide set of chemical analyses was also used. Diatom and chrysophycean cyst analyses were applied, and the diatom inferred total phosphorus content was reconstructed. The results of these studies prove, that the ideal lake sediment study, as a part of a lake management project, should be two-phased. In the first phase, thoroughgoing mapping of sedimentation patterns should be carried out by soundings and adequate corings. The actual sampling, based on the preliminary results, must include at least one long core from the main sedimentation basin for the determining the natural background state of the lake. The recent, artificially impacted development of the lake can then be determined by short-core and surface sediment studies. The sampling must be focused on the basis of the sediment mapping again, and it should represent all different sedimentation environments and bottom dynamic zones, considering the inlets and outlets, as well as the effects of possible point loaders of the lake. In practice, the budget of the lake management projects of is usually limited and only the most essential work and analyses can be carried out. The set of chemical and biological analyses and dating methods must therefore been thoroughly considered and adapted to the specific management problem. The results show also, that information obtained from a properly performed sediment study enhances the planning of the restoration, makes possible to define the target of the remediation activities and improves the cost-efficiency of the project.
Resumo:
This thesis discusses the prehistoric human disturbance during the Holocene by means of case studies using detailed high-resolution pollen analysis from lake sediment. The four lakes studied are situated between 61o 40' and 61o 50' latitudes in the Finnish Karelian inland area and vary between 2.4 and 28.8 ha in size. The existence of Early Metal Age population was one important question. Another study question concerned the development of grazing, and the relationship between slash-and-burn cultivation and permanent field cultivation. The results were presented as pollen percentages and pollen concentrations (grains cm 3). Accumulation values (grains cm 2 yr 1) were calculated for Lake Nautajärvi and Lake Orijärvi sediment, where the sediment accumulation rate was precisely determined. Sediment properties were determined using loss-on-ignition (LOI) and magnetic susceptibility (k). Dating methods used include both conventional and AMS 14C determinations, paleomagnetic dating and varve choronology. The isolation of Lake Kirjavalampi on the northern shore of Lake Ladoga took place ca. 1460 1300 BC. The long sediment cores from Finland, Lake Kirkkolampi and Lake Orijärvi in southeastern Finland and Lake Nautajärvi in south central Finland all extended back to the Early Holocene and were isolated from the Baltic basin ca. 9600 BC, 8600 BC and 7675 BC, respectively. In the long sediment cores, the expansion of Alnus was visible between 7200 - 6840 BC. The spread of Tilia was dated in Lake Kirkkolampi to 6600 BC, in Lake Orijärvi to 5000 BC and at Lake Nautajärvi to 4600 BC. Picea is present locally in Lake Kirkkolampi from 4340 BC, in Lake Orijärvi from 6520 BC and in Lake Nautajärvi from 3500 BC onwards. The first modifications in the pollen data, apparently connected to anthropogenic impacts, were dated to the beginning of the Early Metal Period, 1880 1600 BC. Anthropogenic activity became clear in all the study sites by the end of the Early Metal Period, between 500 BC AD 300. According to Secale pollen, slash-and-burn cultivation was practised around the eastern study lakes from AD 300 600 onwards, and at the study site in central Finland from AD 880 onwards. The overall human impact, however, remained low in the studied sites until the Late Iron Age. Increasing human activity, including an increase in fire frequency was detected from AD 800 900 onwards in the study sites in eastern Finland. In Lake Kirkkolampi, this included cultivation on permanent fields, but in Lake Orijärvi, permanent field cultivation became visible as late as AD 1220, even when the macrofossil data demonstrated the onset of cultivation on permanent fields as early as the 7th century AD. On the northern shore of Lake Ladoga, local activity became visible from ca. AD 1260 onwards and at Lake Nautajärvi, sediment the local occupation was traceable from 1420 AD onwards. The highest values of Secale pollen were recorded both in Lake Orijärvi and Lake Kirjavalampi between ca. AD 1700 1900, and could be associated with the most intensive period of slash-and-burn from AD 1750 to 1850 in eastern Finland.
Resumo:
Leucogranite magmatism occurred in southern Finland during the later stages of the Paleoproterozoic Svecofennian orogeny. The leucogranites are considered to have formed from pre-existing crustal rocks that have undergone anatexis in the extensional stage of the orogeny, following continental collision and resultant crustal thickening. The leucogranites have been studied in the field using petrographic and mineralogical methods, elemental and isotope geochemistry on whole rocks and minerals, and U-Pb geochronology. On outcrop scale, these granites typically form heterogeneous, layered, sheet-like bodies that migmatize their country rocks. All of the leucogranites are peraluminous and rich in SiO2, but otherwise display significant geochemical variation. Their Nd isotope composition ranges from fairly juvenile to very unradiogenic, and the Hf isotope composition of their zircon shows a varying degree of mixing in the source, the zircon populations becoming more heterogeneous and generally less radiogenic towards the east. The leucogranites have been dated using U-Pb isotopic analyses, utilizing thermal ionization mass spectrometry, secondary ion mass spectrometry, and laser ablation multicollector ICP mass spectrometry on zircon and monazite. The results show that the granites were emplaced between 1.85 Ga and 1.79 Ga, which is a considerably longer period than has traditionally been perceived for these rocks. The rocks tend to become younger towards the east. Single crystal data also display a wide array of inherited zircons, especially in the eastern part of the leucogranite belt. The most common inherited age groups are ~2.8 2.5 Ga, ~2.1 2.1 Ga, and ~1.9 Ga. Magmatic zircon and monazite usually record similar ages for any one sample.Thermobarometric calculations indicate that the leucogranites in the Veikkola area of southcentral Finland were formed from relatively low-temperature melts, and emplaced at 17-25 km depth, i.e. at mid-crustal level. It is likely that these conditions apply to the Svecofennian leucogranites in general. Large differences in the Hf and Nd isotope compositions, emplacement ages, and distributions of inherited zircon ages show that these granites were formed from different types of source rocks, which probably included both sedimentary and igneous rocks.