38 resultados para Gene-delivery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies human gene expression space using high throughput gene expression data from DNA microarrays. In molecular biology, high throughput techniques allow numerical measurements of expression of tens of thousands of genes simultaneously. In a single study, this data is traditionally obtained from a limited number of sample types with a small number of replicates. For organism-wide analysis, this data has been largely unavailable and the global structure of human transcriptome has remained unknown. This thesis introduces a human transcriptome map of different biological entities and analysis of its general structure. The map is constructed from gene expression data from the two largest public microarray data repositories, GEO and ArrayExpress. The creation of this map contributed to the development of ArrayExpress by identifying and retrofitting the previously unusable and missing data and by improving the access to its data. It also contributed to creation of several new tools for microarray data manipulation and establishment of data exchange between GEO and ArrayExpress. The data integration for the global map required creation of a new large ontology of human cell types, disease states, organism parts and cell lines. The ontology was used in a new text mining and decision tree based method for automatic conversion of human readable free text microarray data annotations into categorised format. The data comparability and minimisation of the systematic measurement errors that are characteristic to each lab- oratory in this large cross-laboratories integrated dataset, was ensured by computation of a range of microarray data quality metrics and exclusion of incomparable data. The structure of a global map of human gene expression was then explored by principal component analysis and hierarchical clustering using heuristics and help from another purpose built sample ontology. A preface and motivation to the construction and analysis of a global map of human gene expression is given by analysis of two microarray datasets of human malignant melanoma. The analysis of these sets incorporate indirect comparison of statistical methods for finding differentially expressed genes and point to the need to study gene expression on a global level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents methods for locating and analyzing cis-regulatory DNA elements involved with the regulation of gene expression in multicellular organisms. The regulation of gene expression is carried out by the combined effort of several transcription factor proteins collectively binding the DNA on the cis-regulatory elements. Only sparse knowledge of the 'genetic code' of these elements exists today. An automatic tool for discovery of putative cis-regulatory elements could help their experimental analysis, which would result in a more detailed view of the cis-regulatory element structure and function. We have developed a computational model for the evolutionary conservation of cis-regulatory elements. The elements are modeled as evolutionarily conserved clusters of sequence-specific transcription factor binding sites. We give an efficient dynamic programming algorithm that locates the putative cis-regulatory elements and scores them according to the conservation model. A notable proportion of the high-scoring DNA sequences show transcriptional enhancer activity in transgenic mouse embryos. The conservation model includes four parameters whose optimal values are estimated with simulated annealing. With good parameter values the model discriminates well between the DNA sequences with evolutionarily conserved cis-regulatory elements and the DNA sequences that have evolved neutrally. In further inquiry, the set of highest scoring putative cis-regulatory elements were found to be sensitive to small variations in the parameter values. The statistical significance of the putative cis-regulatory elements is estimated with the Two Component Extreme Value Distribution. The p-values grade the conservation of the cis-regulatory elements above the neutral expectation. The parameter values for the distribution are estimated by simulating the neutral DNA evolution. The conservation of the transcription factor binding sites can be used in the upstream analysis of regulatory interactions. This approach may provide mechanistic insight to the transcription level data from, e.g., microarray experiments. Here we give a method to predict shared transcriptional regulators for a set of co-expressed genes. The EEL (Enhancer Element Locator) software implements the method for locating putative cis-regulatory elements. The software facilitates both interactive use and distributed batch processing. We have used it to analyze the non-coding regions around all human genes with respect to the orthologous regions in various other species including mouse. The data from these genome-wide analyzes is stored in a relational database which is used in the publicly available web services for upstream analysis and visualization of the putative cis-regulatory elements in the human genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA ja siinä sijaitsevat geenit ohjaavat kaikkea solujen toimintaa. DNA-molekyyleihin kuitenkin kertyy mutaatioita sekä ympäristön vaikutuksen, että solujen oman toiminnan tuloksena. Mikäli virheitä ei korjata, saattaa tuloksena olla solun muuttuminen syöpäsoluksi. Soluilla onkin käytössä useita DNA-virheiden korjausmekanismeja, joista yksi on ns. mismatch repair (MMR). MMR vastaa DNA:n kahdentumisessa syntyvien virheiden korjauksesta. Periytyvät mutaatiot geeneissä, jotka vastaavat MMR-proteiinien rakentamisesta, aiheuttavat ongelmia DNA:n korjauksessa ja altistavat kantajansa periytyvälle ei-polypoottiselle paksusuolisyöpäoireyhtymälle (hereditary nonpolyposis colorectal cancer, HNPCC). Yleisimmin mutatoituneet MMR-geenit ovat MLH1 ja MSH2. HNPCC periytyy vallitsevasti, eli jo toiselta vanhemmalta peritty geenivirhe altistaa syövälle. MMR-geenivirheen kantaja sairastuu syöpään elämänsä aikana suurella todennäköisyydellä, ja sairastumisikä on vain noin 40 vuotta. Syövälle altistavan geenivirheen löytäminen mutaation kantajilta on hyvin tärkeää, sillä säännöllinen seuranta mahdollistaa kehittymässä olevan kasvaimen havaitsemisen ja poistamisen jo aikaisessa vaiheessa. Tämän on osoitettu alentavan syöpäkuolleisuutta merkittävästi. Varma tieto altistuksen alkuperästä on tärkeä myös niille syöpäsuvun jäsenille, jotka eivät kanna kyseistä mutaatiota. Syövälle altistavien mutaatioiden ohella MMR-geeneistä löydetään säännöllisesti muutoksia, jotka ovat normaalia henkilöiden välistä geneettistä vaihtelua, eikä niiden oleteta lisäävän syöpäaltistusta. Altistavien mutaatioiden erottaminen näistä neutraaleista variaatioista on vaikeaa, mutta välttämätöntä altistuneiden tehokkaan seurannan varmistamiseksi. Tässä väitöskirjassa tutkittiin 18:a MSH2 -geenin mutaatiota. Mutaatiot oli löydetty perheistä, joissa esiintyi paljon syöpiä, mutta niiden vaikutus DNA:n korjaustehoon ja syöpäaltistukseen oli epäselvä. Työssä tutkittiin kunkin mutaation vaikutusta MSH2-proteiinin normaaliin toimintaan, ja tuloksia verrattiin potilaiden ja sukujen kliinisiin tietoihin. Tutkituista mutaatiosta 12 aiheutti puutteita MMR-korjauksessa. Nämä mutaatiot tulkittiin syövälle altistaviksi. Analyyseissä normaalisti toimineet 4 mutaatiota eivät todennäköisesti ole syynä syövän syntyyn kyseisillä perheillä. Tulkinta jätettiin avoimeksi 2 mutaation kohdalla. Tutkimuksesta hyötyivät suoraan kuvattujen mutaatioiden kantajaperheet, joiden geenivirheen syöpäaltistuksesta saatiin tietoa, mahdollistaen perinnöllisyysneuvonnan ja seurannan kohdentamisen sitä tarvitseville. Työ selvensi myös mekanismeja, joilla mutatoitunut MSH2-proteiini voi menettää toimintakykynsä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The removal of non-coding sequences, introns, is an essential part of messenger RNA processing. In most metazoan organisms, the U12-type spliceosome processes a subset of introns containing highly conserved recognition sequences. U12-type introns constitute less than 0,5% of all introns and reside preferentially in genes related to information processing functions, as opposed to genes encoding for metabolic enzymes. It has previously been shown that the excision of U12-type introns is inefficient compared to that of U2-type introns, supporting the model that these introns could provide a rate-limiting control for gene expression. The low efficiency of U12-type splicing is believed to have important consequences to gene expression by limiting the production of mature mRNAs from genes containing U12-type introns. The inefficiency of U12-type splicing has been attributed to the low abundance of the components of the U12-type spliceosome in cells, but this hypothesis has not been proven. The aim of the first part of this work was to study the effect of the abundance of the spliceosomal snRNA components on splicing. Cells with a low abundance of the U12-type spliceosome were found to inefficiently process U12-type introns encoded by a transfected construct, but the expression levels of endogenous genes were not found to be affected by the abundance of the U12-type spliceosome. However, significant levels of endogenous unspliced U12-type intron-containing pre-mRNAs were detected in cells. Together these results support the idea that U12-type splicing may limit gene expression in some situations. The inefficiency of U12-type splicing has also promoted the idea that the U12-type spliceosome may control gene expression, limiting the mRNA levels of some U12-type intron-containing genes. While the identities of the primary target genes that contain U12-type introns are relatively well known, little has previously been known about the downstream genes and pathways potentially affected by the efficiency of U12-type intron processing. Here, the effects of U12-type splicing efficiency on a whole organism were studied in a Drosophila line with a mutation in an essential U12-type spliceosome component. Genes containing U12-type introns showed variable gene-specific responses to the splicing defect, which points to variation in the susceptibility of different genes to changes in splicing efficiency. Surprisingly, microarray screening revealed that metabolic genes were enriched among downstream effects, and that the phenotype could largely be attributed to one U12-type intron-containing mitochondrial gene. Gene expression control by the U12-type spliceosome could thus have widespread effects on metabolic functions in the organism. The subcellular localization of the U12-type spliceosome components was studied as a response to a recent dispute on the localization of the U12-type spliceosome. All components studied were found to be nuclear indicating that the processing of U12-type introns occurs within the nucleus, thus clarifying a question central to the field. The results suggest that the U12-type spliceosome can limit the expression of genes that contain U12-type introns in a gene-specific manner. Through its limiting role in pre-mRNA processing, the U12-type splicing activity can affect specific genetic pathways, which in the case of Drosophila are involved in metabolic functions.