117 resultados para Clinical psychologists - Supervision of
Resumo:
Assessment of the outcome of critical illness is complex. Severity scoring systems and organ dysfunction scores are traditional tools in mortality and morbidity prediction in intensive care. Their ability to explain risk of death is impressive for large cohorts of patients, but insufficient for an individual patient. Although events before intensive care unit (ICU) admission are prognostically important, the prediction models utilize data collected at and just after ICU admission. In addition, several biomarkers have been evaluated to predict mortality, but none has proven entirely useful in clinical practice. Therefore, new prognostic markers of critical illness are vital when evaluating the intensive care outcome. The aim of this dissertation was to investigate new measures and biological markers of critical illness and to evaluate their predictive value and association with mortality and disease severity. The impact of delay in emergency department (ED) on intensive care outcome, measured as hospital mortality and health-related quality of life (HRQoL) at 6 months, was assessed in 1537 consecutive patients admitted to medical ICU. Two new biological markers were investigated in two separate patient populations: in 231 ICU patients and 255 patients with severe sepsis or septic shock. Cell-free plasma DNA is a surrogate marker of apoptosis. Its association with disease severity and mortality rate was evaluated in ICU patients. Next, the predictive value of plasma DNA regarding mortality and its association with the degree of organ dysfunction and disease severity was evaluated in severe sepsis or septic shock. Heme oxygenase-1 (HO-1) is a potential regulator of apoptosis. Finally, HO-1 plasma concentrations and HO-1 gene polymorphisms and their association with outcome were evaluated in ICU patients. The length of ED stay was not associated with outcome of intensive care. The hospital mortality rate was significantly lower in patients admitted to the medical ICU from the ED than from the non-ED, and the HRQoL in the critically ill at 6 months was significantly lower than in the age- and sex-matched general population. In the ICU patient population, the maximum plasma DNA concentration measured during the first 96 hours in intensive care correlated significantly with disease severity and degree of organ failure and was independently associated with hospital mortality. In patients with severe sepsis or septic shock, the cell-free plasma DNA concentrations were significantly higher in ICU and hospital nonsurvivors than in survivors and showed a moderate discriminative power regarding ICU mortality. Plasma DNA was an independent predictor for ICU mortality, but not for hospital mortality. The degree of organ dysfunction correlated independently with plasma DNA concentration in severe sepsis and plasma HO-1 concentration in ICU patients. The HO-1 -413T/GT(L)/+99C haplotype was associated with HO-1 plasma levels and frequency of multiple organ dysfunction. Plasma DNA and HO-1 concentrations may support the assessment of outcome or organ failure development in critically ill patients, although their value is limited and requires further evaluation.
Resumo:
Until recently, objective investigation of the functional development of the human brain in vivo was challenged by the lack of noninvasive research methods. Consequently, fairly little is known about cortical processing of sensory information even in healthy infants and children. Furthermore, mechanisms by which early brain insults affect brain development and function are poorly understood. In this thesis, we used magnetoencephalography (MEG) to investigate development of cortical somatosensory functions in healthy infants, very premature infants at risk for neurological disorders, and adolescents with hemiplegic cerebral palsy (CP). In newborns, stimulation of the hand activated both the contralateral primary (SIc) and secondary somatosensory cortices (SIIc). The activation patterns differed from those of adults, however. Some of the earliest SIc responses, constantly present in adults, were completely lacking in newborns and the effect of sleep stage on SIIc responses differed. These discrepancies between newborns and adults reflect the still developmental stage of the newborns’ somatosensory system. Its further maturation was demonstrated by a systematic transformation of the SIc response pattern with age. The main early adultlike components were present by age two. In very preterm infants, at term age, the SIc and SIIc were activated at similar latencies as in healthy fullterm newborns, but the SIc activity was weaker in the preterm group. The SIIc response was absent in four out of the six infants with brain lesions of the underlying hemisphere. Determining the prognostic value of this finding remains a subject for future studies, however. In the CP adolescents with pure subcortical lesions, contrasting their unilateral symptoms, the SIc responses of both hemispheres differed from those of controls: For example the distance between SIc representation areas for digits II and V was shorter bilaterally. In four of the five CP patients with corticosubcortical brain lesions, no normal early SIc responses were evoked by stimulation of the palsied hand. The varying differences in neuronal functions, underlying the common clinical symptoms, call for investigation of more precisely designed rehabilitation strategies resting on knowledge about individual functional alterations in the sensorimotor networks.
Resumo:
The prevalence and assessment of neuroleptic-induced movement disorders (NIMDs) in a naturalistic schizophrenia population that uses conventional neuroleptics were studied. We recruited 99 chronic schizophrenic institutionalized adult patients from a state nursing home in central Estonia. The total prevalence of NIMDs according to the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) was 61.6%, and 22.2% had more than one NIMD. We explored the reliability and validity of different instruments for measuring these disorders. First, we compared DSM-IV with the established observer rating scales of Barnes Akathisia Rating Scale (BARS), Simpson-Angus Scale (SAS) (for neuroleptic-induced parkinsonism, NIP) and Abnormal Involuntary Movement Scale (AIMS) (for tardive dyskinesia), all three of which have been used for diagnosing NIMD. We found a good overlap of cases for neuroleptic-induced akathisia (NIA) and tardive dyskinesia (TD) but somewhat poorer overlap for NIP, for which we suggest raising the commonly used threshold value of 0.3 to 0.65. Second, we compared the established observer rating scales with an objective motor measurement, namely controlled rest lower limb activity measured by actometry. Actometry supported the validity of BARS and SAS, but it could not be used alone in this naturalistic population with several co-existing NIMDs. It could not differentiate the disorders from each other. Quantitative actometry may be useful in measuring changes in NIA and NIP severity, in situations where the diagnosis has been made using another method. Third, after the relative failure of quantitative actometry to show diagnostic power in a naturalistic population, we explored descriptive ways of analysing actometric data, and demonstrated diagnostic power pooled NIA and pseudoakathisia (PsA) in our population. A subjective question concerning movement problems was able to discriminate NIA patients from all other subjects. Answers to this question were not selective for other NIMDs. Chronic schizophrenia populations are common worldwide, NIMD affected two-thirds of our study population. Prevention, diagnosis and treatment of NIMDs warrant more attention, especially in countries where typical antipsychotics are frequently used. Our study supported the validity and reliability of DSM-IV diagnostic criteria for NIMD in comparison with established rating scales and actometry. SAS can be used with minor modifications for screening purposes. Controlled rest lower limb actometry was not diagnostically specific in our naturalistic population with several co-morbid NIMDs, but it may be sensitive in measuring changes in NIMDs.
Resumo:
Ruptured abdominal aortic aneurysm (RAAA) is a life-threatening event, and without operative treatment the patient will die. The overall mortality can be as high as 80-90%; thus repair of RAAA should be attempted whenever feasible. The quality of life (QoL) has become an increasingly important outcome measure in vascular surgery. Aim of the study was to evaluate outcomes of RAAA and to find out predictors of mortality. In Helsinki and Uusimaa district 626 patients were identified to have RAAA in 1996-2004. Altogether 352 of them were admitted to Helsinki University Central Hospital (HUCH). Based on Finnvasc Registry, 836 RAAA patients underwent repair of RAAA in 1991-1999. The 30-day operative mortality, hospital and population-based mortality were assessed, and the effect of regional centralisation and improving in-hospital quality on the outcome of RAAA. QoL was evaluated by a RAND-36 questionnaire of survivors of RAAA. Quality-adjusted life years (QALYs), which measure length and QoL, were calculated using the EQ-5D index and estimation of life expectancy. The predictors of outcome after RAAA were assessed at admission and 48 hours after repair of RAAA. The 30-day operative mortality rate was 38% in HUCH and 44% nationwide, whereas the hospital mortality was 45% in HUCH. Population-based mortality was 69% in 1996-2004 and 56% in 2003-2004. After organisational changes were undertaken, the mortality decreased significantly at all levels. Among the survivors, the QoL was almost equal when compared with norms of age- and sex-matched controls; only physical functioning was slightly impaired. Successful repair of RAAA gave a mean of 4.1 (0-30.9) QALYs for all RAAA patients, although non-survivors were included. The preoperative Glasgow Aneurysm Score was an independent predictor of 30-day operative mortality after RAAA, and it also predicted the outcome at 48- hours for initial survivors of repair of RAAA. A high Glasgow Aneurysm Score and high age were associated with low numbers of QALYs to be achieved. Organ dysfunction measured by the Sequential Organ Failure Assessment (SOFA) score at 48 hours after repair of RAAA was the strongest predictor of death. In conclusion surgery of RAAA is a life-saving and cost-effective procedure. The centralisation of vascular emergencies improved the outcome of RAAA patients. The survivors had a good QoL after RAAA. Predictive models can be used on individual level only to provide supplementary information for clinical decision-making due to their moderate discriminatory value. These results support an active operation policy, as there is no reliable measure to predict the outcome after RAAA.
Resumo:
Cytomegalovirus (CMV) is a major cause of morbidity, costs and even mortality in organ transplant recipients. CMV may also enhance the development of chronic allograft nephropathy (CAN), which is the most important cause of graft loss after kidney transplantation. The evidence for the role of CMV in chronic allograft nephropathy is somewhat limited, and controversial results have also been reported. The aim of this study was to investigate the role of CMV in the pathogenesis of CAN. Material for the purpose of this study was available from altogether 70 kidney transplant recipients who received a kidney transplant between the years 1992-2000. CMV infection was diagnosed with pp65 antigenemia test or by viral culture from blood, urine, or both. CMV proteins were demonstrated in the kidney allograft biopsies by immunohistochemisrty and CMV-DNA by in situ hybridization. Cytokines, adhesion molecules, and growth factors were demonstrated from allograft biopsies by immunohistochemistry, and from urinary samples by ELISA-methods. CMV proteins were detectable in the 6-month protocol biopsies from 18/41 recipients with evidence of CMV infection. In the histopathological analysis of the 6-month protocol biopsies, presence of CMV in the allograft together with a previous history of acute rejection episodes was associated with increased arteriosclerotic changes in small arterioles. In urinary samples collected during CMV infection, excretion of TGF-β was significantly increased. In recipients with increased urinary excretion of TGF-β, increased interstitial fibrosis was recorded in the 6- month protocol biopsies. In biopsies taken after an active CMV infection, CMV persisted in the kidney allograft in 17/48 recipients, as CMV DNA or antigens were detected in the biopsies more than 2 months after the last positive finding in blood or urine. This persistence was associated with increased expression of TGF-β, PDGF, and ICAM-1 and with increased vascular changes in the allografts. Graft survival and graft function one and two years after transplantation were reduced in recipients with persistent intragraft CMV. Persistent intragraft CMV infection was also a risk factor for reduced graft survival in Cox regression analysis, and an independent risk factor for poor graft function one and two years after transplantation in logistic regression analysis. In conclusion, these results show that persistent intragraft CMV infection is detrimental to kidney allografts, causing increased expression of growth factors and increased vascular changes, leading to reduced graft function and survival. Effective prevention, diagnosis and treatment of CMV infections may a major factor in improving the long term survival of kidney allograft.
Resumo:
The striated muscle sarcomere is a force generating and transducing unit as well as an important sensor of extracellular cues and a coordinator of cellular signals. The borders of individual sarcomeres are formed by the Z-disks. The Z-disk component myotilin interacts with Z-disk core structural proteins and with regulators of signaling cascades. Missense mutations in the gene encoding myotilin cause dominantly inherited muscle disorders, myotilinopathies, by an unknown mechanism. In this thesis the functions of myotilin were further characterized to clarify the molecular biological basis and the pathogenetic mechanisms of inherited muscle disorders, mainly caused by mutated myotilin. Myotilin has an important function in the assembly and maintenance of the Z-disks probably through its actin-organizing properties. Our results show that the Ig-domains of myotilin are needed for both binding and bundling actin and define the Ig domains as actin-binding modules. The disease-causing mutations appear not to change the interplay between actin and myotilin. Interactions between Z-disk proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disk components myotilin, ZASP/Cypher and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We showed that proteins from the myotilin and FATZ families interact via a novel and unique type of class III PDZ binding motif with the PDZ domains of ZASP and other Enigma family members and that the interactions can be modulated by phosphorylation. The morphological findings typical of myotilinopathies include Z-disk alterations and aggregation of dense filamentous material. The causes and mechanisms of protein aggregation in myotilinopathy patients are unknown, but impaired degradation might explain in part the abnormal protein accumulation. We showed that myotilin is degraded by the calcium-dependent, non-lysosomal cysteine protease calpain and by the proteasome pathway, and that wild type and mutant myotilin differ in their sensitivity to degradation. These studies identify the first functional difference between mutated and wild type myotilin. Furthermore, if degradation of myotilin is disturbed, it accumulates in cells in a manner resembling that seen in myotilinopathy patients. Based on the results, we propose a model where mutant myotilin escapes proteolytic breakdown and forms protein aggregates, leading to disruption of myofibrils and muscular dystrophy. In conclusion, the main results of this study demonstrate that myotilin is a Z-disk structural protein interacting with several Z-disk components. The turnover of myotilin is regulated by calpain and the ubiquitin proteasome system and mutations in myotilin seem to affect the degradation of myotilin, leading to protein accumulations in cells. These findings are important for understanding myotilin-linked muscle diseases and designing treatments for these disorders.
Resumo:
Primary biliary cirrhosis (PBC) is caused by an autoimmune inflammation of the small bile ducts. It results to destruction of bile ducts, accumulation of the bile in the liver, and cirrhosis. The prevalence and incidence of PBC is increasing in the Western world. The prevalence is highest in the USA (402 per million) and incidence in Scotland (49/million/year). Our aim was to assess the epidemiology of PBC in Finland. Patients for the epidemiological study were searched from the hospital discharge records from year 1988 to 1999.The prevalence rose from 103 to 180/million from 1988 to 1999, an annual increase of 5.1%. The incidence rose from 12 to 17 /million/year, an annual increase of 3.5%. The age at death increased markedly from 65 to 76 years. The risk of liver related deaths diminished over time. The treatment of PBC is based on Ursodeoxycholic acid (UDCA). During 20 years 50% of patients end up with cirrhosis. Our treatment option was to combine budesonide, a potent corticosteroid with a high first pass metabolism in the liver, to UDCA and evaluate the liver effects and systemic effects such as bone mass density (BMD) changes. Our aim was to find out if combination of laboratory tests would serve as a surrogate marker for PBC and help reducing the need for liver biopsy. Non-cirrhotic PBC patients were randomized to receive budesonide 6 mg/day combined to UDCA 15 mg /kg/day or UDCA alone for three years. The combination therapy with UDCA and budesonide was effective: stage improved 22%, fibrosis 25%, and inflammation 32%. In the UDCA group the changes were: 20% deterioriation in stage and 70% in fibrosis, but a 10% improvement in inflammation. BMD in femoral neck decreased by 3.6% in the combination group and by 1.9% in the UDCA group. The reductions in lumbar spine were 2.8% and 0.7%. Pharmacokinetics did not differ between the stages of PBC. HA, PIIINP, bile acids, and AST were significantly different within stages I-III and could differentiate the mild fibrosis (F0F1) from the moderate (F2F3). The combination of these individual markers (PBC-score) further improved the accuracy. The area under the ROC of the PBC score, using a cut of value 66, had a sensitivity of 81.4% and a specificity of 65.2% to classify the stage of PBC. The prevalence of PBC in Finland increases, which results from increasing incidence and improved survival. The combination of budesonide and UDCA improves liver histology compared to UDCA alone in non-cirrhotic stages of PBC. The treatment may reduce BMD. Hyaluronic acid, PIIINP, AST, and bile acids may serve as tools to monitor the treatment response in the early stages of PBC. The budesonide and UDCA combination therapy is an option for those patients who do not receive full response from UDCA and are still at the non-cirrhotic stage of PBC.
Resumo:
Singleton pregnancies achieved by means of assisted reproductive treatment (ART) are associated with increased obstetric and neonatal risks in comparison with spontaneously conceived singleton pregnancies. The impact of infertility- and treatment-related factors on these risks is not properly understood. In addition, the psychological effects of infertility and its treatment on the experience of pregnancy have scarcely been studied. Thus, the aim of the present study was to evaluate the importance of infertility- and treatment-related factors on prediction of pregnancy outcome, obstetric and neonatal risks, fear-of-childbirth and pregnancy-related anxiety. The subjects consisted of infertile women who achieved a singleton pregnancy by means of in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI). The control groups comprised spontaneously conceiving women with singleton gestations. Early pregnancy outcome was assessed by means of assay of serum human chorionic gonadoptrophin (hCG) in single samples. Other outcome data were collected from patient records, national Health Registers and via prospective questionnaire surveys. Viable pregnancies were associated with significantly higher serum hCG levels 12 days after embryo transfer than non-viable pregnancies. Among singleton pregnancies, aetiological subgroup, treatment type or the number of transferred embryos did not impair the predictive value of single hCG assessment. According to the register-based data, age-, parity- and socioeconomic status- adjusted risks of gestational hypertension, preterm contractions and placenta praevia were more frequent in the ART pregnancies than in the control pregnancies. Significantly higher rates of induction of delivery and Caesarean section occurred in the ART group than in the control group. The risks of preterm birth and low birth weight (LBW) were increased after ART pregnancy. Duration or aetiology of infertility, treatment type (fresh or frozen IVF or ICSI) or rank of treatment did not contribute to the risks of preterm birth or LBW. In addition, the risks of preterm birth and LBW remained elevated in spite of of the number of transferred embryos. Although mean duration of pregnancy was shorter and mean birth weight lower in the ART pregnancies than in the control pregnancies, these differences were hardly of clinical significance. Fear-of-childbirth and pregnancy-related anxiety were equally common to women conceiving by means of ART, or spontaneously. Partnership of five to ten years appeared to be protective as regards severe fear-of-childbirth, whereas long preceding infertility (≥ seven years) had the opposite effect. In conclusion, an early hCG assessment maintained its good predictive value regardless of infertility- or patient-related factors. Further, we did not recognise any infertility- or patient-related factors that would expose infertile women to increased obstetric or neonatal risks. However, a long period of infertility was associated with severe fear-of-childbirth.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
Essential thrombocythaemia (ET) is a myeloproliferative disease (MPD) characterized by thrombocytosis, i.e. a constant elevation of platelet count. Thrombocytosis may appear in MPDs (ET, polycythaemia vera, chronic myeloid leukaemia, myelofibrosis) and as a reactive phenomenon. The differential diagnosis of thrombocytosis is important, because the clinical course, need of therapy, and prognosis are different in patients with MPDs and in those with reactive thrombocytosis. ET patients may remain asymptomatic for years, but serious thrombohaemorrhagic and pregnancy-related complications may occur. The complications are difficult to predict. The aims of the present study were to evaluate the diagnostic findings, clinical course, and prognostic factors of ET. The present retrospective study consists of 170 ET patients. Two thirds had a platelet count < 1000 x 109/l. The diagnosis was supported by an increased number of megakaryocytes with an abnormal morphology in a bone marrow aspirate, aggregation defects in platelet function studies, and the presence of spontaneous erythroid and/or megakaryocytic colony formation in in vitro cultures of haematopoietic progenitors. About 70 % of the patients had spontaneous colony formation, while about 30 % had a normal growth pattern. Only a fifth of the patients remained asymptomatic. Half had a major thrombohaemorrhagic complication. The proportion of the patients suffering from thrombosis was as high as 45 %. About a fifth had major bleedings. Half of the patients had microvascular symptoms. Age over 60 years increased the risk of major bleedings, but the occurrence of thrombotic complications was similar in all age groups. Male gender, smoking in female patients, the presence of any spontaneous colony formation, and the presence of spontaneous megakaryocytic colony formation in younger patients were identified as risk factors for thrombosis. Pregnant ET patients had an increased risk of complications. Forty-five per cent of the pregnancies were complicated and 38 % of them ended in stillbirth. Treatment with acetylsalicylic acid alone or in combination with platelet lowering drugs improved the outcome of the pregnancy. The present findings about risk factors in ET as well as treatment outcome in the pregnancies of ET patients should be taken into account when planning treatment strategies for Finnish patients.
Resumo:
Pioglitazone is a thiazolidinedione compound used in the treatment of type 2 diabetes. It has been reported to be metabolised by multiple cytochrome P450 (CYP) enzymes, including CYP2C8, CYP2C9 and CYP3A4 in vitro. The aims of this work were to identify the CYP enzymes mainly responsible for the elimination of pioglitazone in order to evaluate its potential for in vivo drug interactions, and to investigate the effects of CYP2C8- and CYP3A4-inhibiting drugs (gemfibrozil, montelukast, zafirlukast and itraconazole) on the pharmacokinetics of pioglitazone in healthy volunteers. In addition, the effect of induction of CYP enzymes on the pharmacokinetics of pioglitazone in healthy volunteers was investigated, with rifampicin as a model inducer. Finally, the effect of pioglitazone on CYP2C8 and CYP3A enzyme activity was examined in healthy volunteers using repaglinide as a model substrate. Study I was conducted in vitro using pooled human liver microsomes (HLM) and human recombinant CYP isoforms. Studies II to V were randomised, placebo-controlled cross-over studies with 2-4 phases each. A total of 10-12 healthy volunteers participated in each study. Pretreatment with clinically relevant doses with the inhibitor or inducer was followed by a single dose of pioglitazone or repaglinide, whereafter blood and urine samples were collected for the determination of drug concentrations. In vitro, the elimination of pioglitazone (1 µM) by HLM was markedly inhibited, in particular by CYP2C8 inhibitors, but also by CYP3A4 inhibitors. Of the recombinant CYP isoforms, CYP2C8 metabolised pioglitazone markedly, and CYP3A4 also had a significant effect. All of the tested CYP2C8 inhibitors (montelukast, zafirlukast, trimethoprim and gemfibrozil) concentration-dependently inhibited pioglitazone metabolism in HLM. In humans, gemfibrozil raised the area under the plasma concentration-time curve (AUC) of pioglitazone 3.2-fold (P < 0.001) and prolonged its elimination half-life (t½) from 8.3 to 22.7 hours (P < 0.001), but had no significant effect on its peak concentration (Cmax) compared with placebo. Gemfibrozil also increased the excretion of pioglitazone into urine and reduced the ratios of the active metabolites M-IV and M-III to pioglitazone in plasma and urine. Itraconazole had no significant effect on the pharmacokinetics of pioglitazone and did not alter the effect of gemfibrozil on pioglitazone pharmacokinetics. Rifampicin decreased the AUC of pioglitazone by 54% (P < 0.001) and shortened its dominant t½ from 4.9 to 2.3 hours (P < 0.001). No significant effect on Cmax was observed. Rifampicin also decreased the AUC of the metabolites M-IV and M-III, shortened their t½ and increased the ratios of the metabolite to pioglitazone in plasma and urine. Montelukast and zafirlukast did not affect the pharmacokinetics of pioglitazone. The pharmacokinetics of repaglinide remained unaffected by pioglitazone. These studies demonstrate the principal role of CYP2C8 in the metabolism of pioglitazone in humans. Gemfibrozil, an inhibitor of CYP2C8, increases and rifampicin, an inducer of CYP2C8 and other CYP enzymes, decreases the plasma concentrations of pioglitazone, which can necessitate blood glucose monitoring and adjustment of pioglitazone dosage. Montelukast and zafirlukast had no effects on the pharmacokinetics of pioglitazone, indicating that their inhibitory effect on CYP2C8 is negligible in vivo. Pioglitazone did not increase the plasma concentrations of repaglinide, indicating that its inhibitory effect on CYP2C8 and CYP3A4 is very weak in vivo.
Resumo:
Data on the influence of unilateral vocal fold paralysis on breathing, especially other than information obtained by spirometry, are relatively scarce. Even less is known about the effect of its treatment by vocal fold medialization. Consequently, there was a need to study the issue by combining multiple instruments capable of assessing airflow dynamics and voice. This need was emphasized by a recently developed medialization technique, autologous fascia injection; its effects on breathing have not previously been investigated. A cohort of ten patients with unilateral vocal fold paralysis was studied before and after autologous fascia injection by using flow-volume spirometry, body plethysmography and acoustic analysis of breathing and voice. Preoperative results were compared with those of ten healthy controls. A second cohort of 11 subjects with unilateral vocal fold paralysis was studied pre- and postoperatively by using flow-volume spirometry, impulse oscillometry, acoustic analysis of voice, voice handicap index and subjective assessment of dyspnoea. Preoperative peak inspiratory flow and specific airway conductance were significantly lower and airway resistance was significantly higher in the patients than in the healthy controls (78% vs. 107%, 73% vs. 116% and 182% vs. 125% of predicted; p = 0.004, p = 0.004 and p = 0.026, respectively). Patients had a higher root mean square of spectral power of tracheal sounds than controls, and three of them had wheezes as opposed to no wheezing in healthy subjects. Autologous fascia injection significantly improved acoustic parameters of the voice in both cohorts and voice handicap index in the latter cohort, indicating that this procedure successfully improved voice in unilateral vocal fold paralysis. Peak inspiratory flow decreased significantly as a consequence of this procedure (from 4.54 ± 1.68 l to 4.21 ± 1.26 l, p = 0.03, in pooled data of both cohorts), but no change occurred in the other variables of flow-volume spirometry, body-plethysmography and impulse oscillometry. Eight of the ten patients studied by acoustic analysis of breathing had wheezes after vocal fold medialization compared with only three patients before the procedure, and the numbers of wheezes per recorded inspirium and expirium increased significantly (from 0.02 to 0.42 and from 0.03 to 0.36; p = 0.028 and p = 0.043, respectively). In conclusion, unilateral vocal fold paralysis was observed to disturb forced breathing and also to cause some signs of disturbed tidal breathing. Findings of flow volume spirometry were consistent with variable extra-thoracic obstruction. Vocal fold medialization by autologous fascia injection improved the quality of the voice in patients with unilateral vocal fold paralysis, but also decreased peak inspiratory flow and induced wheezing during tidal breathing. However, these airflow changes did not appear to cause significant symptoms in patients.
Resumo:
Opioids are most commonly used for treatment of severe pain. However, the fear of respiratory depression has restricted the use of opioids. Depending on the monitoring system used, different modes of opioid respiratory effects have been noted in previous studies. All opioids also cause alterations in hemodynamics at least to some extent. The main goal of this series of investigations was to elucidate the native ventilatory and hemodynamic effects of different opioids. Studies I-IV each involved 8 healthy male volunteers. Study V involved 13 patients with lower or upper extremity traumas. The opioids studied were morphine, oxycodone, pethidine, fentanyl, alfentanil, tramadol and ketamine. The respiratory parameters used in this study were breathing pattern measured with respiratory inductive plethysmography, gas exchange measured with indirect calorimetry, blood gas analysis and pulse oximetry. Hemodynamics was measured with arterial blood pressure, heart rate and oxygen consumption. Plasma catecholamine and histamine concentrations were also determined. All opioids studied caused an alteration in respiratory function. Respiratory rate, alveolar ventilation and minute ventilation decreased, while tidal volume increased in most situations. Breathing pattern was also significantly affected after opioid administration. The respiratory depression caused by oxycodone was deeper than the one caused by same dose of morphine. An equianalgesic dose of tramadol caused markedly smaller respiratory depression compared to pethidine. The potency ratio for respiratory depression of fentanyl and alfentanil is similar to analgesic potency ratio studied elsewhere. Racemic ketamine attenuated the respiratory depression caused by fentanyl, if measured with minute ventilation. However, this effect was counteracted by increased oxygen consumption. Supplemental oxygen did not offer any benefits, nor did it cause any atelectasis when given to opioid treated trauma patients. Morphine caused a transient hemodynamic stimulation, which was accompanied by an increase in oxygen consumption. Oxycodone, alfentanil, fentanyl, tramadol and pethidine infusions had minimal effects on hemodynamics. Plasma catecholamine concentrations were increased after high dose opioid administration. Plasma histamine concentrations were not elevated after morphine nor oxycodone administration. Respiratory depression is a side effect noted with all opioids. The profile of this phenomenon is quite similar with different opioid-receptor agonists. The hemodynamic effects of opioids may vary depending on the opioid used, morphine causing a slight hemodynamic stimulation. However, all opioids studied could be considered hemodynamically stable.
Resumo:
Thrombin is a multifunctional protease, which has a central role in the development and progression of coronary atherosclerotic lesions and it is a possible mediator of myocardial ischemia-reperfusion injury. Its generation and procoagulant activity are greatly upregulated during cardiopulmonary bypass (CPB). On the other hand, activated protein C, a physiologic anticoagulant that is activated by thrombomodulin-bound thrombin, has been beneficial in various models of ischemia-reperfusion. Therefore, our aim in this study was to test whether thrombin generation or protein C activation during coronary artery bypass grafting (CABG) associate with postoperative myocardial damage or hemodynamic changes. To further investigate the regulation of thrombin during CABG, we tested whether preoperative thrombophilic factors associate with increased CPB-related generation of thrombin or its procoagulant activity. We also measured the anticoagulant effects of heparin during CPB with a novel coagulation test, prothrombinase-induced clotting time (PiCT), and compared the performance of this test with the present standard of laboratory-based anticoagulation monitoring. One hundred patients undergoing elective on-pump CABG were studied prospectively. A progressive increase in markers of thrombin generation (F1+2), fibrinolysis (D-dimer), and fibrin formation (soluble fibrin monomer complexes) was observed during CPB, which was further distinctly propagated by reperfusion after myocardial ischemia, and continued to peak after the neutralization of heparin with protamine. Thrombin generation during reperfusion after CABG associated with postoperative myocardial damage and increased pulmonary vascular resistance. Activated protein C levels increased only slightly during CPB before the release of the aortic clamp, but reperfusion and more significantly heparin neutralization caused a massive increase in activated protein C levels. Protein C activation was clearly delayed in relation to both thrombin generation and fibrin formation. Even though activated protein C associated dynamically with postoperative hemodynamic performance, it did not associate with postoperative myocardial damage. Preoperative thrombophilic variables did not associate with perioperative thrombin generation or its procoagulant activity. Therefore, our results do not favor routine thrombophilia screening before CABG. There was poor agreement between PiCT and other measurements of heparin effects in the setting of CPB. However, lower heparin levels during CPB associated with inferior thrombin control and high heparin levels during CPB associated with fewer perioperative transfusions of blood products. Overall, our results suggest that hypercoagulation after CABG, especially during reperfusion, might be clinically important.
Resumo:
Long QT syndrome is a congenital or acquired arrhythmic disorder which manifests as a prolonged QT-interval on the electrocardiogram and as a tendency to develop ventricular arrhythmias which can lead to sudden death. Arrhythmias often occur during intense exercise and/or emotional stress. The two most common subtypes of LQTS are LQT1, caused by mutations in the KCNQ1 gene and LQT2, caused by mutations in the KCNH2 gene. LQT1 and LQT2 patients exhibit arrhythmias in different types of situations: in LQT1 the trigger is usually vigorous exercise whereas in LQT2 arrhythmia results from the patient being startled from rest. It is not clear why trigger factors and clinical outcome differ from each other in the different LQTS subtypes. It is possible that stress hormones such as catecholamines may show different effects depending on the exact nature of the genetic defect, or sensitivity to catecholamines varies from subject to subject. Furthermore, it is possible that subtle genetic variants of putative modifier genes, including those coding for ion channels and hormone receptors, play a role as determinants of individual sensitivity to life-threatening arrhythmias. The present study was designed to identify some of these risk modifiers. It was found that LQT1 and LQT2 patients show an abnormal QT-adaptation to both mental and physical stress. Furthermore, as studied with epinephrine infusion experiments while the heart was paced and action potentials were measured from the right ventricular septum, LQT1 patients showed repolarization abnormalities which were related to their propensity to develop arrhythmia during intense, prolonged sympathetic tone, such as exercise. In LQT2 patients, this repolarization abnormality was noted already at rest corresponding to their arrhythmic episodes as a result of intense, sudden surges in adrenergic tone, such as fright or rage. A common KCNH2 polymorphism was found to affect KCNH2 channel function as demonstrated by in vitro experiments utilizing mammalian cells transfected with the KCNH2 potassium channel as well as QT-dynamics in vivo. Finally, the present study identified a common β-1-adrenergic receptor genotype that is related a shorter QT-interval in LQT1 patients. Also, it was discovered that compound homozygosity for two common β-adrenergic polymorphisms was related to the occurrence of symptoms in the LQT1 type of long QT syndrome. The studies demonstrate important genotype-phenotype differences between different LQTS subtypes and suggest that common modifier gene polymorphisms may affect cardiac repolarization in LQTS. It will be important in the future to prospectively study whether variant gene polymorphisms will assist in clinical risk profiling of LQTS patients.