75 resultados para Carbon stock
Resumo:
The ever-increasing demand for faster computers in various areas, ranging from entertaining electronics to computational science, is pushing the semiconductor industry towards its limits on decreasing the sizes of electronic devices based on conventional materials. According to the famous law by Gordon E. Moore, a co-founder of the world s largest semiconductor company Intel, the transistor sizes should decrease to the atomic level during the next few decades to maintain the present rate of increase in the computational power. As leakage currents become a problem for traditional silicon-based devices already at sizes in the nanometer scale, an approach other than further miniaturization is needed to accomplish the needs of the future electronics. A relatively recently proposed possibility for further progress in electronics is to replace silicon with carbon, another element from the same group in the periodic table. Carbon is an especially interesting material for nanometer-sized devices because it forms naturally different nanostructures. Furthermore, some of these structures have unique properties. The most widely suggested allotrope of carbon to be used for electronics is a tubular molecule having an atomic structure resembling that of graphite. These carbon nanotubes are popular both among scientists and in industry because of a wide list of exciting properties. For example, carbon nanotubes are electronically unique and have uncommonly high strength versus mass ratio, which have resulted in a multitude of proposed applications in several fields. In fact, due to some remaining difficulties regarding large-scale production of nanotube-based electronic devices, fields other than electronics have been faster to develop profitable nanotube applications. In this thesis, the possibility of using low-energy ion irradiation to ease the route towards nanotube applications is studied through atomistic simulations on different levels of theory. Specifically, molecular dynamic simulations with analytical interaction models are used to follow the irradiation process of nanotubes to introduce different impurity atoms into these structures, in order to gain control on their electronic character. Ion irradiation is shown to be a very efficient method to replace carbon atoms with boron or nitrogen impurities in single-walled nanotubes. Furthermore, potassium irradiation of multi-walled and fullerene-filled nanotubes is demonstrated to result in small potassium clusters in the hollow parts of these structures. Molecular dynamic simulations are further used to give an example on using irradiation to improve contacts between a nanotube and a silicon substrate. Methods based on the density-functional theory are used to gain insight on the defect structures inevitably created during the irradiation. Finally, a new simulation code utilizing the kinetic Monte Carlo method is introduced to follow the time evolution of irradiation-induced defects on carbon nanotubes on macroscopic time scales. Overall, the molecular dynamic simulations presented in this thesis show that ion irradiation is a promisingmethod for tailoring the nanotube properties in a controlled manner. The calculations made with density-functional-theory based methods indicate that it is energetically favorable for even relatively large defects to transform to keep the atomic configuration as close to the pristine nanotube as possible. The kinetic Monte Carlo studies reveal that elevated temperatures during the processing enhance the self-healing of nanotubes significantly, ensuring low defect concentrations after the treatment with energetic ions. Thereby, nanotubes can retain their desired properties also after the irradiation. Throughout the thesis, atomistic simulations combining different levels of theory are demonstrated to be an important tool for determining the optimal conditions for irradiation experiments, because the atomic-scale processes at short time scales are extremely difficult to study by any other means.
Resumo:
Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.
Resumo:
The main method of modifying properties of semiconductors is to introduce small amount of impurities inside the material. This is used to control magnetic and optical properties of materials and to realize p- and n-type semiconductors out of intrinsic material in order to manufacture fundamental components such as diodes. As diffusion can be described as random mixing of material due to thermal movement of atoms, it is essential to know the diffusion behavior of the impurities in order to manufacture working components. In modified radiotracer technique diffusion is studied using radioactive isotopes of elements as tracers. The technique is called modified as atoms are deployed inside the material by ion beam implantation. With ion implantation, a distinct distribution of impurities can be deployed inside the sample surface with good con- trol over the amount of implanted atoms. As electromagnetic radiation and other nuclear decay products emitted by radioactive materials can be easily detected, only very low amount of impurities can be used. This makes it possible to study diffusion in pure materials without essentially modifying the initial properties by doping. In this thesis a modified radiotracer technique is used to study the diffusion of beryllium in GaN, ZnO, SiGe and glassy carbon. GaN, ZnO and SiGe are of great interest to the semiconductor industry and beryllium as a small and possibly rapid dopant hasn t been studied previously using the technique. Glassy carbon has been added to demonstrate the feasibility of the technique. In addition, the diffusion of magnetic impurities, Mn and Co, has been studied in GaAs and ZnO (respectively) with spintronic applications in mind.
Resumo:
Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.
Resumo:
A functioning stock market is an essential component of a competitive economy, since it provides a mechanism for allocating the economy’s capital stock. In an ideal situation, the stock market will steer capital in a manner that maximizes the total utility of the economy. As prices of traded stocks depend on and vary with information available to investors, it is apparent that information plays a crucial role in a functioning stock market. However, even though information indisputably matters, several issues regarding how stock markets process and react to new information still remain unanswered. The purpose of this thesis is to explore the link between new information and stock market reactions. The first essay utilizes new methodological tools in order to investigate the average reaction of investors to new financial statement information. The second essay explores the behavior of different types of investors when new financial statement information is disclosed to the market. The third essay looks into the interrelation between investor size, behavior and overconfidence. The fourth essay approaches the puzzle of negative skewness in stock returns from an altogether different angle than previous studies. The first essay presents evidence of the second derivatives of some financial statement signals containing more information than the first derivatives. Further, empirical evidence also indicates that some of the investigated signals proxy risk while others contain information priced with a delay. The second essay documents different categories of investors demonstrating systematical differences in their behavior when new financial statement information arrives to the market. In addition, a theoretical model building on differences in investor overconfidence is put forward in order to explain the observed behavior. The third essay shows that investor size describes investor behavior very well. This finding is predicted by the model proposed in the second essay, and hence strengthens the model. The behavioral differences between investors of different size furthermore have significant economic implications. Finally, the fourth essay finds strong evidence of management news disclosure practices causing negative skewness in stock returns.
Resumo:
One of the most fundamental and widely accepted ideas in finance is that investors are compensated through higher returns for taking on non-diversifiable risk. Hence the quantification, modeling and prediction of risk have been, and still are one of the most prolific research areas in financial economics. It was recognized early on that there are predictable patterns in the variance of speculative prices. Later research has shown that there may also be systematic variation in the skewness and kurtosis of financial returns. Lacking in the literature so far, is an out-of-sample forecast evaluation of the potential benefits of these new more complicated models with time-varying higher moments. Such an evaluation is the topic of this dissertation. Essay 1 investigates the forecast performance of the GARCH (1,1) model when estimated with 9 different error distributions on Standard and Poor’s 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of variance from intra-day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. In Essay 2, by using 20 years of daily Standard and Poor 500 index returns, it is found that density forecasts are much improved by allowing for constant excess kurtosis but not improved by allowing for skewness. By allowing the kurtosis and skewness to be time varying the density forecasts are not further improved but on the contrary made slightly worse. In Essay 3 a new model incorporating conditional variance, skewness and kurtosis based on the Normal Inverse Gaussian (NIG) distribution is proposed. The new model and two previously used NIG models are evaluated by their Value at Risk (VaR) forecasts on a long series of daily Standard and Poor’s 500 returns. The results show that only the new model produces satisfactory VaR forecasts for both 1% and 5% VaR Taken together the results of the thesis show that kurtosis appears not to exhibit predictable time variation, whereas there is found some predictability in the skewness. However, the dynamic properties of the skewness are not completely captured by any of the models.
Resumo:
Functioning capital markets are a crucial part of a competitive economy since they provide the mechanisms to allocate resources. In order to be well functioning a capital market has to be efficient. Market efficiency is defined as a market where prices at any time fully reflect all available information. Basically, this means that abnormal returns cannot be predicted since they are dependent on future, presently unknown, information. The debate of market efficiency has been going on for several decades. Most academics today would probably agree that financial markets are reasonably efficient since virtually nobody has been able to achieve continuous abnormal positive returns. However, it is clear that a set of return anomalies exists, although they are apparently to small to enable substantial economic profit. Moreover, these anomalies can often be attributed to market design. The motivation for this work is to expand the knowledge of short-term trading patterns and to offer some explanations for these patterns. In the first essay the return pattern during the day is examined. On average stock prices move during two time periods of the day, namely, immediately after the opening and around the formal close of the market. Since stock prices, on average, move upwards these abnormal returns are generally positive and cause the distinct U-shape of intraday returns. In the second essay the results in the first essay are examined further. The return pattern around the former close is shown to partly be the result of manipulative action by market participants. In the third essay the focus is shifted towards trading patterns of the underlying stocks on days when index options and index futures on the stocks expire. Generally no expiration day effect was found. However, some indication of an expiration day effect was found when a large amount of open in- or at-the-money contracts existed. Also, the effects were likelier to be found for shares with high index-weight but fairly low trading volume. Last, in the forth essay the attention is turned to the behaviour of different tax clienteles around the dividend ex-day. Two groups of investors showed abnormal trading behaviour. Domestic non-financial investors, especially domestic companies, showed a dividend capturing behaviour, i.e. buying cum-dividend and selling ex-dividend shares. The opposite behaviour was found for foreign investors and domestic financial institutions. The effect was more notable for high yield, high volume stocks.
Resumo:
Executive compensation and managerial behavior have received an increasing amount of attention in the financial economics literature since the mid 1970s. The purpose of this thesis is to extend our understanding of managerial compensation, especially how stock option compensation is linked to the actions undertaken by the management. Furthermore, managerial compensation is continuously and heatedly debated in the media and an emerging consensus from this discussion seems to be that there still exists gaps in our knowledge of optimal contracting. In Finland, the first executive stock options were introduced in the 1980s and throughout the last 15 years it has become increasingly popular for Finnish listed firms to use this type of managerial compensation. The empirical work in the thesis is conducted using data from Finland, in contrast to most previous studies that predominantly use U.S. data. Using Finnish data provides insight of how market conditions affect compensation and managerial action and provides an opportunity to explore what parts of the U.S. evidence can be generalized to other markets. The thesis consists of four essays. The first essay investigates the exercise policy of the executive stock option holders in Finland. In summary, Essay 1 contributes to our understanding of the exercise policies by examining both the determinants of the exercise decision and the markets reaction to the actual exercises. The second essay analyzes the factors driving stock option grants using data for Finnish publicly listed firms. Several agency theory based variables are found to have have explanatory power on the likelihood of a stock option grant. Essay 2 also contributes to our understanding of behavioral factors, such as prior stock return, as determinants of stock option compensation. The third essay investigates the tax and stock option motives for share repurchases and dividend distributions. We document strong support for the tax motive for share repurchases. Furthermore, we also analyze the dividend distribution decision in companies with stock options and find a significant difference between companies with and without dividend protected options. We thus document that the cutting of dividends found in previous U.S. studies can be avoided by dividend protection. In the fourth essay we approach the puzzle of negative skewness in stock returns from an altogether different angle than in previous studies. We suggest that negative skewness in stock returns is generated by management disclosure practices and find proof for this. More specifically, we find that negative skewness in daily returns is induced by returns for days when non-scheduled firm specific news is disclosed.
Resumo:
Managerial pay-for-performance sensitivity has increased rapidly around the world. Early empirical research showed that pay-for-performance sensitivity resulting from stock ownership and stock options appeared to be quite low during the 1970s and early 1980s in the U.S. However, recent empirical research from the U.S. shows an enormous increase in pay-for-performance sensitivity. The global trend has also reached Finland, where stock options have become a major ingredient of executive compensation. The fact that stock options seem to be an appealing form of remuneration from a theoretical point of view combined with the observation that the use of this compensation form has increased significantly during the recent years, implies that research on the dynamics of stock option compensation is highly relevant for the academic community, as well as for practitioners and regulators. The research questions of the thesis are analyzed in four separate essays. The first essay examines whether stock option compensation practices of Finnish firms are consistent with predictions from principal-agent theory. The second essay explores one of the major puzzles in the compensation literature by studying determinants of stock option contract design. In theory, optimal contract design should vary according to firm characteristics. However, in the U.S., variation in contract design seems to be surprisingly low, a phenomenon generally attributed to tax and accounting considerations. In Finland, however, firms are not subject to stringent contracting restrictions, and the variation in contract design tends, in fact, to be quite substantial. The third essay studies the impact of price- and risk incentives arising from stock option compensation on firm investment. In addition, the essay explores one of the most debated questions in the literature, in particular, the relation between incentives and firm performance. Finally, several strands of literature in both economics and corporate finance hypothesize that economic uncertainty is related to corporate decision-making. Previous research has shown that risk tends to slow down firm investment. In the fourth essay, it is hypothesized that firm risk slows down growth from a more universal perspective. Consistent with this view, it is shown that risk not only tends to slow down firm investment, but also employment growth. Moreover, the essay explores whether the nature of firms’ compensation policies, in particular, whether firms make use of stock option compensation, affects the relation between risk and firm growth. In summary, the four essays contribute to the current understanding of stock options as a form of equity incentives, and how incentives and risk affect corporate decision-making. By this, the thesis promotes the knowledge related to the modern theory of the firm.
Resumo:
First, in Essay 1, we test whether it is possible to forecast Finnish Options Index return volatility by examining the out-of-sample predictive ability of several common volatility models with alternative well-known methods; and find additional evidence for the predictability of volatility and for the superiority of the more complicated models over the simpler ones. Secondly, in Essay 2, the aggregated volatility of stocks listed on the Helsinki Stock Exchange is decomposed into a market, industry-and firm-level component, and it is found that firm-level (i.e., idiosyncratic) volatility has increased in time, is more substantial than the two former, predicts GDP growth, moves countercyclically and as well as the other components is persistent. Thirdly, in Essay 3, we are among the first in the literature to seek for firm-specific determinants of idiosyncratic volatility in a multivariate setting, and find for the cross-section of stocks listed on the Helsinki Stock Exchange that industrial focus, trading volume, and block ownership, are positively associated with idiosyncratic volatility estimates––obtained from both the CAPM and the Fama and French three-factor model with local and international benchmark portfolios––whereas a negative relation holds between firm age as well as size and idiosyncratic volatility.
Resumo:
Liquidity, or how easy an investment is to buy or sell, is becoming increasingly important for financial market participants. The objective of this dissertation is to contribute to the understanding of how liquidity affects financial markets. The first essays analyze the actions taken by underwriters immediately after listing to improve liquidity of IPO stock. To estimate the impact of underwriter activity on the pricing of the IPOs, the order book during the first weeks of trading in the IPO stock is studied. Evidence of stabilization and liquidity enhancing activities by underwriters is found. The second half of the dissertation is concerned with the daily trading of stocks where liquidity may be impacted by policy issues such as changes in taxes or exchange fees and by opening the access to the markets for foreign investors. The desirability of a transaction tax on securities trading is addressed. An increase in transaction tax is found to cause lower prices and higher volatility. In the last essay the objective is to determine if the liquidity of a security has an impact on the return investors require. The results support the notion that returns are negatively correlated to liquidity.
Resumo:
This study contributes to the executive stock option literature by looking at factors driving the introduction of such a compensation form on a firm level. Using a discrete decision model I test the explanatory power of several agency theory based variables and find strong support for predictability of the form of executive compensation. Ownership concentration and liquidity are found to have a significant negative effect on the probability of stock option adoption. Furtermore, I find evidence of CEO ownership, institutional ownership, investment intensity, and historical market return having a significant and a positive relationship to the likelihood of adopting a executive stock option program.