108 resultados para sperm production


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatilization of ammonia (NH3) from animal manure is a major pathway for nitrogen (N) losses that cause eutrophication, acidification, and other environmental hazards. In this study, the effect of alternative techniques of manure treatment (aeration, separation, addition of peat) and application (broadcast spreading, band spreading, injection, incorporation by harrowing) on ammonia emissions in the field and on nitrogen uptake by ley or cereals was studied. The effect of a mixture of slurry and peat on soil properties was also investigated. The aim of this study was to find ways to improve the utilization of manure nitrogen and reduce its release to the environment. Injection into the soil or incorporation by harrowing clearly reduced ammonia volatilization from slurry more than did the surface application onto a smaller area by band spreading or reduction of the dry matter of slurry by aeration or separation. Surface application showed low ammonia volatilization, when pig slurry was applied to tilled bare clay soil or to spring wheat stands in early growth stages. Apparently, the properties of both slurry and soil enabled the rapid infiltration and absorption of slurry and its ammoniacal nitrogen by the soil. On ley, however, surface-applied cattle slurry lost about half of its ammoniacal nitrogen. The volatilization of ammonia from surface-applied peat manure was slow, but proceeded over a long period of time. After rain or irrigation, the peat manure layer on the soil surface retarded evaporation. Incorporation was less important for the fertilizer effect of peat manure than for pig slurry, but both manures were more effective when incorporated. Peat manure applications increase soil organic matter content and aggregate stability. Stubble mulch tillage hastens the effect in surface soil compared with ploughing. The apparent recovery of ammoniacal manure nitrogen in crop yield was higher with injection and incorporation than with surface applications. This was the case for leys as well as for spring cereals, even though ammonia losses from manures applied to cereals were relatively low with surface applications as well. The ammoniacal nitrogen of surface-applied slurry was obviously adsorbed by the very surface soil and remained mostly unavailable to plant roots in the dry soil. Supplementing manures with inorganic fertilizer nitrogen, which adds plant-available nitrogen to the soil at the start of growth, increased the overall recovery of applied nitrogen in crop yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study focuses on the translational strategies of Cocksfoot mottle virus (CfMV, genus Sobemovirus), which infects monocotyledonous plants. CfMV RNA lacks the 5'cap and the 3'poly(A) tail that ensure efficient translation of cellular messenger RNAs (mRNAs). Instead, CfMV RNA is covalently linked to a viral protein VPg (viral protein, genome-linked). This indicates that the viral untranslated regions (UTRs) must functionally compensate for the lack of the cap and poly(A) tail. We examined the efficacy of translation initiation in CfMV by comparing it to well-studied viral translational enhancers. Although insertion of the CfMV 5'UTR (CfMVe) into plant expression vectors improved gene expression in barley more than the other translational enhancers examined, studies at the RNA level showed that CfMVe alone or in combination with the CfMV 3'UTR did not provide the RNAs translational advantage. Mutation analysis revealed that translation initiation from CfMVe involved scanning. Interestingly, CfMVe also promoted translation initiation from an intercistronic position of dicistronic mRNAs in vitro. Furthermore, internal initiation occurred with similar efficacy in translation lysates that had reduced concentrations of eukaryotic initiation factor (eIF) 4E, suggesting that initiation was independent of the eIF4E. In contrast, reduced translation in the eIF4G-depleted lysates indicated that translation from internally positioned CfMVe was eIF4G-dependent. After successful translation initiation, leaky scanning brings the ribosomes to the second open reading frame (ORF). The CfMV polyprotein is produced from this and the following overlapping ORF via programmed -1 ribosomal frameshift (-1 PRF). Two signals in the mRNA at the beginning of the overlap program approximately every fifth ribosome to slip one nucleotide backwards and continue translation in the new -1 frame. This leads to the production of C-terminally extended polyprotein, which encodes the viral RNA-dependent RNA polymerase (RdRp). The -1 PRF event in CfMV was very efficient, even though it was programmed by a simple stem-loop structure instead of a pseudoknot, which is usually required for high -1 PRF frequencies. Interestingly, regions surrounding the -1 PRF signals improved the -1 PRF frequencies. Viral protein P27 inhibited the -1 PRF event in vivo, putatively by binding to the -1 PRF site. This suggested that P27 could regulate the occurrence of -1 PRF. Initiation of viral replication requires that viral proteins are released from the polyprotein. This is catalyzed by viral serine protease, which is also encoded from the polyprotein. N-terminal amino acid sequencing of CfMV VPg revealed that the junction of the protease and VPg was cleaved between glutamate (E) and asparagine (N) residues. This suggested that the processing sites used in CfMV differ from the glutamate and serine (S) or threonine (T) sites utilized in other sobemoviruses. However, further analysis revealed that the E/S and E/T sites may be used to cleave out some of the CfMV proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Syanobakteerit (sinilevät) ovat olleet Itämeressä koko nykymuotoisen Itämeren ajan, sillä paleolimnologiset todisteet niiden olemassaolosta Itämeren alueella ovat noin 7000 vuoden takaa. Syanobakteerien massaesiintymät eli kukinnat ovat kuitenkin sekä levinneet laajemmille alueille että tulleet voimakkaimmiksi viimeisten vuosikymmenien aikana. Tähän on osasyynä ihmisten aiheuttama kuormitus, joka rehevöittää Itämerta. Suomenlahti, jota tämä tutkimus käsittelee, on kärsinyt tästä rehevöitymiskehityksestä muita Itämeren altaita enemmän. Syanobakteerit muodostavat jokakesäisiä kukintoja Suomenlahdella - niin sen avomerialueilla kuin rannoillakin. Yleisimmät kukintoja muodostavat syanobakteerisuvut ovat Nodularia, Anabaena ja Aphanizomenon. Kukinnat aiheuttavat paitsi esteettistä haittaa myös terveydellisen riskitekijän. Niiden myrkyllisyys liitetään usein Nodularia-suvun tuottamaan nodulariini-maksamyrkkyyn. Itämeren Aphanizomenon-suvun on todettu olevan myrkytön. Vaikka Itämeren kukintoja aiheuttavista Nodularia- ja Aphanizomenon-syanobakteereista tiedetään varsin paljon, on molekyylimenetelmiin pohjautuva syanobakteeritutkimus ohittanut Itämeren Anabaena-suvun monelta osin. Tämän työn tarkoituksena oli syventää käsitystämme Itämeren Anabaena-syanobakteerista, sen mahdollisesta myrkyllisyydestä, geneettisestä monimuotoisuudesta ja fylogeneettisista sukulaisuussuhteista. Tässä työssä eristettiin 49 planktista Anabaena-kantaa, joista viisi tuottivat mikrokystiinejä. Tämä oli ensimmäinen yksiselitteinen todiste, että Itämeren Anabaena tuottaa maksamyrkyllisiä mikrokystiini-yhdisteitä. Jokainen eristetty myrkyllinen Anabaena-kanta tuotti useita mikrokystiini-variantteja. Lisäksi mikrokystiinejä löydettiin kukintanäytteistä, joissa oli myrkkyä syntetisoivia geenejä sisältäneitä Anabaena-syanobakteereita. Myrkkyjä löydettiin molempina tutkimusvuosina 2003 ja 2004. Myrkkyjen esiintyminen ei siten ollut vain yksittäinen ilmiö. Tässä työssä saimme viitteitä siitä, että maksamyrkyllinen Anabaena-syanobakteeri esiintyisi vähäsuolaisissa vesissä. Tämä riippuvuussuhde jää kuitenkin tulevien tutkimuksien selvitettäväksi. Tässä työssä havaittiin mikrokystiinisyntetaasi-geenien inaktivoituminen Itämeren Anabaena-kannassa ja kukintanäytteissä. Kuvasimme Anabaena-kannan mikrokystiinisyntetaasigeenien sisältä insertioita, jotka hyvin todennäköisesti inaktivoivat myrkyntuoton. Insertion sisältäneeltä kannalta löysimme kuitenkin kaikki mikrokystiinisyntetaasigeenit osoittaen, että geenien olemassaolo ei välttämättä varmista kannan mikrokystiinintuottoa. Mielenkiintoista oli se, että inaktivaation aiheuttavia insertioita löytyi kukintanäytteistä molemmilta tutkimusvuosilta. Vastaavia insertioita ei kuitenkaan löydetty makean veden Anabaena-kannoista tai järvinäytteistä. On yleistä, että syanobakteerikukinnoista löytyy usean syanobakteerisuvun edustajia. Myrkyllisiä sukuja tai lajeja ei voida kuitenkaan erottaa mikroskooppisesti myrkyttömistä. Käsillä olevassa tutkimuksessa kehitettiin molekyylimenetelmä, jolla on mahdollista määrittää kukinnan mahdollisesti maksamyrkylliset syanobakteerisuvut. Tätä menetelmää sovellettiin Itämeren kukintojen tutkimiseen. Itämeren pintavesistä ja ranta-alueiden pohjasta eristetyt Anabaena-kannat osoittautuivat geneettisesti monimuotoisiksi. Tämä Anabaena-syanobakteerien geneettinen monimuotoisuus vahvistettiin monistamalla geenejä suoraan kukintanäytteistä ilman kantojen eristystä. Makeiden vesien ja Itämeren Anabaena-kannat ovat geneettisesti hyvin samankaltaisia. Geneettisissä vertailuissa kävi kuitenkin ilmi, että pohjassa elävien Anabaena-kantojen geneettinen monimuotoisuus oli suurempaa kuin pintavesistä eristettyjen kantojen. Itämeren Anabaena-kantojen sekvenssit muodostivat omia ryhmiä sukupuun sisällä, jolloin on mahdollista, että nämä edustavat Itämeren omia Anabaena-ekotyyppejä. Tämä tutkimus oli ensimmäinen, jossa uusin molekyylimenetelmin systemaattisesti selvitettiin Itämeren Anabaena-syanobakteerin geneettistä populaatiorakennetta, fylogeniaa ja myrkyntuottoa. Tulevaisuudessa monitorointitutkimuksissa on otettava huomioon myös Itämeren Anabaena-syanobakteerin mahdollinen maksamyrkyntuotto – erityisesti vähäsuolaisemmilla rannikkovesillä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus is a nutrient needed in crop production. While boosting crop yields it may also accelerate eutrophication in the surface waters receiving the phosphorus runoff. The privately optimal level of phosphorus use is determined by the input and output prices, and the crop response to phosphorus. Socially optimal use also takes into account the impact of phosphorus runoff on water quality. Increased eutrophication decreases the economic value of surface waters by Deteriorating fish stocks, curtailing the potential for recreational activities and by increasing the probabilities of mass algae blooms. In this dissertation, the optimal use of phosphorus is modelled as a dynamic optimization problem. The potentially plant available phosphorus accumulated in soil is treated as a dynamic state variable, the control variable being the annual phosphorus fertilization. For crop response to phosphorus, the state variable is more important than the annual fertilization. The level of this state variable is also a key determinant of the runoff of dissolved, reactive phosphorus. Also the loss of particulate phosphorus due to erosion is considered in the thesis, as well as its mitigation by constructing vegetative buffers. The dynamic model is applied for crop production on clay soils. At the steady state, the analysis focuses on the effects of prices, damage parameterization, discount rate and soil phosphorus carryover capacity on optimal steady state phosphorus use. The economic instruments needed to sustain the social optimum are also analyzed. According to the results the economic incentives should be conditioned on soil phosphorus values directly, rather than on annual phosphorus applications. The results also emphasize the substantial effects the differences in varying discount rates of the farmer and the social planner have on optimal instruments. The thesis analyzes the optimal soil phosphorus paths from its alternative initial levels. It also examines how erosion susceptibility of a parcel affects these optimal paths. The results underline the significance of the prevailing soil phosphorus status on optimal fertilization levels. With very high initial soil phosphorus levels, both the privately and socially optimal phosphorus application levels are close to zero as the state variable is driven towards its steady state. The soil phosphorus processes are slow. Therefore, depleting high phosphorus soils may take decades. The thesis also presents a methodologically interesting phenomenon in problems of maximizing the flow of discounted payoffs. When both the benefits and damages are related to the same state variable, the steady state solution may have an interesting property, under very general conditions: The tail of the payoffs of the privately optimal path as well as the steady state may provide a higher social welfare than the respective tail of the socially optimal path. The result is formalized and an applied to the created framework of optimal phosphorus use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is grounded on four articles. Article I generally examines the factors affecting dental service utilization. Article II studies the factors associated with sector-specific utilization among young adults entitled to age-based subsidized dental care. Article III explores the determinants of dental ill-health as measured by the occurrence of caries and the relationship between dental ill-health and dental care use. Article IV measures and explains income-related inequality in utilization. Data employed were from the 1996 Finnish Health Care Survey (I, II, IV) and the 1997 follow-up study included in the longitudinal study of the Northern Finland 1966 Birth Cohort (III). Utilization is considered as a multi-stage decision-making process and measured as the number of visits to the dentist. Modified count data models and concentration and horizontal equity indices were applied. Dentist s recall appeared very efficient at stimulating individuals to seek care. Dental pain, recall, and the low number of missing teeth positively affected utilization. Public subvention for dental care did not seem to statistically increase utilization. Among young adults, a perception of insufficient public service availability and recall were positively associated with the choice of a private dentist, whereas income and dentist density were positively associated with the number of visits to private dentists. Among cohort females, factors increasing caries were body mass index and intake of alcohol, sugar, and soft drinks and those reducing caries were birth weight and adolescent school achievement. Among cohort males, caries was positively related to the metropolitan residence and negatively related to healthy diet and education. Smoking increased caries, whereas regular teeth brushing, regular dental attendance and dental care use decreased caries. We found equity in young adults utilization but pro-rich inequity in the total number of visits to all dentists and in the probability of visiting a dentist for the whole sample. We observed inequity in the total number of visits to the dentist and in the probability of visiting a dentist, being pro-poor for public care but pro-rich for private care. The findings suggest that to enhance equal access to and use of dental care across population and income groups, attention should focus on supply factors and incentives to encourage people to contact dentists more often. Lowering co-payments and service fees and improving public availability would likely increase service use in both sectors. To attain favorable oral health, appropriate policies aimed at improving dental health education and reducing the detrimental effects of common risk factors on dental health should be strengthened. Providing equal access with respect to need for all people ought to take account of the segmentation of the service system, with its two parallel delivery systems and different supplier incentives to patients and dentists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) family ligands: GDNF, neurturin, persephin and artemin, signal through a receptor tyrosine kinase Ret by binding first to a co-receptor (GFRα1-4) that is attached to the plasma membrane. The GDNF family factors can support the survival of various peripheral and central neuronal populations and have important functions also outside the nervous system, especially in kidney development. Activating mutations in the RET gene cause tumours in neuroendocrine cells, whereas inactivating mutations in RET are found in patients with Hirschsprung s disease (HSCR) characterized by loss of ganglionic cells along the intestine. The aim of this study was to examine the in vivo functions of neurturin receptor GFRα2 and persephin receptor GFRα4 using knockout (KO) mice. Mice lacking GFRα2 grow poorly after weaning and have deficits in parasympathetic and enteric innervation. This study shows that impaired secretion of the salivary glands and exocrine pancreas contribute to growth retardation in GFRα2-KO mice. These mice have a reduced number of intrapancreatic neurons and decreased cholinergic innervation of the exocrine pancreas as well as reduced excitatory fibres in the myenteric plexus of the small intestine. This study also demonstrates that GFRα2-mediated Ret signalling is required for target innervation and maintenance of soma size of sympathetic cholinergic neurons and sensory nociceptive IB4-binding neurons. Furthermore, lack of GFRα2 in mice results in deficient perception of temperatures above and below thermoneutrality and in attenuated inflammatory pain response. GFRα4 is co-expressed with Ret predominantly in calcitonin-producing thyroid C-cells in the mouse. In this study GFRα4-deficient mice were generated. The mice show no gross developmental deficits and have a normal number of C-cells. However, young but not adult mice lacking GFRα4 have a lower production of calcitonin in thyroid tissue and consequently, an increased bone formation rate. Thus, GFRα4/Ret signalling may regulate calcitonin production. In conclusion, this study reveals that GFRα2/Ret signalling is crucial for the development and function of specific components of the peripheral nervous system and that GFRα4-mediated Ret signalling is required for controlling transmitter synthesis in thyroid C-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultimate goal of this study has been to construct metabolically engineered microbial strains capable of fermenting glucose into pentitols D-arabitol and, especially, xylitol. The path that was chosen to achieve this goal required discovery, isolation and sequencing of at least two pentitol phosphate dehydrogenases of different specificity, followed by cloning and expression of their genes and characterization of recombinant arabitol and xylitol phosphate dehydrogenases. An enzyme of a previously unknown specificity, D-arabitol phosphate dehydrogenase (APDH), was discovered in Enterococcus avium. The enzyme was purified to homogenity from E. avium strain ATCC 33665. SDS/PAGE revealed that the enzyme has a molecular mass of 41 ± 2 kDa, whereas a molecular mass of 160 ± 5 kDa was observed under non-denaturing conditions implying that the APDH may exist as a tetramer with identical subunits. Purified APDH was found to have narrow substrate specificity, converting only D-arabitol 1-phosphate and D-arabitol 5-phosphate into D-xylulose 5-phosphate and D-ribulose 5-phosphate, respectively, in the oxidative reaction. Both NAD+ and NADP+ were accepted as co-factors. Based on the partial protein sequences, the gene encoding APDH was cloned. Homology comparisons place APDH within the medium chain dehydrogenase family. Unlike most members of this family, APDH requires Mn2+ but no Zn2+ for enzymatic activity. The DNA sequence surrounding the gene suggests that it belongs to an operon that also contains several components of phosphotransferase system (PTS). The apparent role of the enzyme is to participate in arabitol catabolism via the arabitol phosphate route similar to the ribitol and xylitol catabolic routes described previously. Xylitol phosphate dehydrogenase (XPDH) was isolated from Lactobacillus rhamnosus strain ATCC 15820. The enzyme was partially sequenced. Amino acid sequences were used to isolate the gene encoding the enzyme. The homology comparisons of the deduced amino acid sequence of L. rhamnosus XPDH revealed several similar enzymes in genomes of various species of Gram-positive bacteria. Two enzymes of Clostridium difficile and an enzyme of Bacillus halodurans were cloned and their substrate specificities together with the substrate specificity of L. rhamnosus XPDH were compared. It was found that one of the XPDH enzymes of C. difficile and the XPDH of L. rhamnosus had the highest selectivity towards D-xylulose 5-phosphate. A known transketolase-deficient and D-ribose-producing mutant of Bacillus subtilis (ATCC 31094) was further modified by disrupting its rpi (D-ribose phosphate isomerase) gene to create D-ribulose- and D-xylulose-producing strain. Expression of APDH of E. avium and XPDH of L. rhamnosus and C. difficile in D-ribulose- and D-xylulose-producing strain of B. subtilis resulted in strains capable of converting D-glucose into D-arabitol and xylitol, respectively. The D-arabitol yield on D-glucose was 38 % (w/w). Xylitol production was accompanied by co-production of ribitol limiting xylitol yield to 23 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work covered in this thesis is focused on the development of technology for bioconversion of glucose into D-erythorbic acid (D-EA) and 5-ketogluconic acid (5-KGA). The task was to show on proof-of-concept level the functionality of the enzymatic conversion or one-step bioconversion of glucose to these acids. The feasibility of both studies to be further developed for production processes was also evaluated. The glucose - D-EA bioconversion study was based on the use of a cloned gene encoding a D-EA forming soluble flavoprotein, D-gluconolactone oxidase (GLO). GLO was purified from Penicillium cyaneo-fulvum and partially sequenced. The peptide sequences obtained were used to isolate a cDNA clone encoding the enzyme. The cloned gene (GenBank accession no. AY576053) is homologous to the other known eukaryotic lactone oxidases and also to some putative prokaryotic lactone oxidases. Analysis of the deduced protein sequence of GLO indicated the presence of a typical secretion signal sequence at the N-terminus of the enzyme. No other targeting/anchoring signals were found, suggesting that GLO is the first known lactone oxidase that is secreted rather than targeted to the membranes of the endoplasmic reticulum or mitochondria. Experimental evidence supports this analysis, as near complete secretion of GLO was observed in two different yeast expression systems. Highest expression levels of GLO were obtained using Pichia pastoris as an expression host. Recombinant GLO was characterised and the suitability of purified GLO for the production of D-EA was studied. Immobilised GLO was found to be rapidly inactivated during D-EA production. The feasibility of in vivo glucose - D-EA conversion using a P. pastoris strain co-expressing the genes of GLO and glucose oxidase (GOD, E.C. 1.1.3.4) of A. niger was demonstrated. The glucose - 5-KGA bioconversion study followed a similar strategy to that used in the D-EA production research. The rationale was based on the use of a cloned gene encoding a membrane-bound pyrroloquinoline quinone (PQQ)-dependent gluconate 5-dehydrogenase (GA 5-DH). GA 5-DH was purified to homogeneity from the only source of this enzyme known in literature, Gluconobacter suboxydans, and partially sequenced. Using the amino acid sequence information, the GA 5-DH gene was cloned from a genomic library of G. suboxydans. The cloned gene was sequenced (GenBank accession no. AJ577472) and found to be an operon of two adjacent genes encoding two subunits of GA 5-DH. It turned out that GA 5-DH is a rather close homologue of a sorbitol dehydrogenase from another G. suboxydans strain. It was also found that GA 5-DH has significant polyol dehydrogenase activity. The G. suboxydans GA 5-DH gene was poorly expressed in E. coli. Under optimised conditions maximum expression levels of GA 5-DH did not exceed the levels found in wild-type G. suboxydans. Attempts to increase expression levels resulted in repression of growth and extensive cell lysis. However, the expression levels were sufficient to demonstrate the possibility of bioconversion of glucose and gluconate into 5-KGA using recombinant strains of E. coli. An uncharacterised homologue of GA 5-DH was identified in Xanthomonas campestris using in silico screening. This enzyme encoded by chromosomal locus NP_636946 was found by a sequencing project of X. campestris and named as a hypothetical glucose dehydrogenase. The gene encoding this uncharacterised enzyme was cloned, expressed in E. coli and found to encode a gluconate/polyol dehydrogenase without glucose dehydrogenase activity. Moreover, the X. campestris GA 5-DH gene was expressed in E. coli at nearly 30 times higher levels than the G. suboxydans GA 5-DH gene. Good expressability of the X. campestris GA-5DH gene makes it a valuable tool not only for 5-KGA production in the tartaric acid (TA) bioprocess, but possibly also for other bioprocesses (e.g. oxidation of sorbitol into L-sorbose). In addition to glucose - 5-KGA bioconversion, a preliminary study of the feasibility of enzymatic conversion of 5-KGA into TA was carried out. Here, the efficacy of the first step of a prospective two-step conversion route including a transketolase and a dehydrogenase was confirmed. It was found that transketolase convert 5-KGA into TA semialdehyde. A candidate for the second step was suggested to be succinic dehydrogenase, but this was not tested. The analysis of the two subprojects indicated that bioconversion of glucose to TA using X. campestris GA 5-DH should be prioritised first and the process development efforts in future should be focused on development of more efficient GA 5-DH production strains by screening a more suitable production host and by protein engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metanogeenit ovat hapettomissa oloissa eläviä arkkien pääryhmään kuuluvia mikrobeja, joiden ainutlaatuisen aineenvaihdunnan seurauksena syntyy metaania. Ilmakehässä metaani on voimakas kasvihuonekaasu. Yksi suurimmista luonnon metaanilähteistä ovat kosteikot. Pohjoisten soiden metaanipäästöt vaihtelevat voimakkaasti eri soiden välillä ja yhden suon sisälläkin, riippuen muun muassa vuodenajasta, suotyypistä ja kasvillisuudesta. Väitöskirjatyössä tutkittiin metaanipäästöjen vaihtelun mikrobiologista taustaa. Tutkimuksessa selvitettiin suotyypin, vuodenajan, tuhkalannoituksen ja turvesyvyyden vaikutusta metanogeeniyhteisöihin sekä metaanintuottoon kolmella suomalaisella suolla. Lisäksi tutkittiin ei-metanogeenisia arkkeja ja bakteereita, koska ne muodostavat metaanin tuoton lähtöaineet osana hapetonta hajotusta. Mikrobiyhteisöt analysoitiin DNA- ja RNA-lähtöisillä, polymeraasiketjureaktioon (PCR) perustuvilla menetelmillä. Merkkigeeneinä käytettiin metaanin tuottoon liittyvää mcrA-geeniä sekä arkkien ja bakteerien ribosomaalista 16S RNA-geeniä. Metanogeeniyhteisöt ja metaanintuotto erosivat huomattavasti happaman ja vähäravinteisen rahkasuon sekä ravinteikkaampien sarasoiden välillä. Rahkasuolta löytyi lähes yksinomaan Methanomicrobiales-lahkon metanogeeneja, jotka tuottavat metaania vedystä ja hiilidioksidista. Sarasoiden metanogeeniyhteisöt olivat monimuotoisempia, ja niillä esiintyi myös asetaattia käyttäviä metanogeeneja. Vuodenaika vaikutti merkittävästi metaanintuottoon. Talvella havaittiin odottamattoman suuri metaanintuottopotentiaali sekä viitteitä aktiivisista metanogeeneista. Arkkiyhteisön koostumus sen sijaan vaihteli vain vähän. Tuhkalannoitus, jonka tarkoituksena on edistää puiden kasvua ojitetuilla soilla, ei merkittävästi vaikuttanut metaanintuottoon tai -tuottajiin. Ojitetun suon yhteisöt kuitenkin muuttuivat turvesyvyyden mukaan. Vertailtaessa erilaisia PCR-menetelmiä todettiin, että kolmella mcrA-geeniin kohdistuvalla alukeparilla havaittiin pääosin samat ojitetun suon metanogeenit, mutta lajien runsaussuhteet riippuvat käytetyistä alukkeista. Soilla havaitut bakteerit kuuluivat pääjaksoihin Deltaproteobacteria, Acidobacteria ja Verrucomicrobia. Lisäksi löydettiin Crenarchaeota-pääjakson ryhmiin 1.1c ja 1.3 kuuluvia ei-metanogeenisia arkkeja. Tulokset ryhmien esiintymisestä hapettomassa turpeessa antavat lähtökohdan selvittää niiden mahdollisia vuorovaikutuksia metanogeenien kanssa. Tutkimuksen tulokset osoittivat, että metanogeeniyhteisön koostumus heijastaa metaanintuottoon vaikuttavia kemiallisia tai kasvillisuuden vaihteluita kuten suotyyppiä. Soiden metanogeenien ja niiden fysiologian parempi tuntemus voi auttaa ennustamaan ympäristömuutosten vaikutusta soiden metaanipäästöihin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The baker s yeast Saccharomyces cerevisiae has a long tradition in alcohol production from D-glucose of e.g. starch. However, without genetic modifications it is unable to utilise the 5-carbon sugars D-xylose and L arabinose present in plant biomass. In this study, one key metabolic step of the catabolic D-xylose pathway in recombinant D-xylose-utilising S. cerevisiae strains was studied. This step, carried out by xylulokinase (XK), was shown to be rate-limiting, because overexpression of the xylulokinase-encoding gene XKS1 increased both the specific ethanol production rate and the yield from D xylose. In addition, less of the unwanted side product xylitol was produced. Recombinant D-xylose-utilizing S. cerevisiae strains have been constructed by expressing the genes coding for the first two enzymes of the pathway, D-xylose reductase (XR) and xylitol dehydrogenase (XDH) from the D-xylose-utilising yeast Pichia stipitis. In this study, the ability of endogenous genes of S. cerevisiae to enable D-xylose utilisation was evaluated. Overexpression of the GRE3 gene coding for an unspecific aldose reductase and the ScXYL2 gene coding for a xylitol dehydrogenase homologue enabled growth on D-xylose in aerobic conditions. However, the strain with GRE3 and ScXYL2 had a lower growth rate and accumulated more xylitol compared to the strain with the corresponding enzymes from P. stipitis. Use of the strictly NADPH-dependent Gre3p instead of the P. stipitis XR able to utilise both NADH and NADPH leads to a more severe redox imbalance. In a S. cerevisiae strain not engineered for D-xylose utilisation the presence of D-xylose increased xylitol dehydrogenase activity and the expression of the genes SOR1 or SOR2 coding for sorbitol dehydrogenase. Thus, D-xylose utilisation by S. cerevisiae with activities encoded by ScXYL2 or possibly SOR1 or SOR2, and GRE3 is feasible, but requires efficient redox balance engineering. Compared to D-xylose, D-glucose is a cheap and readily available substrate and thus an attractive alternative for xylitol manufacture. In this study, the pentose phosphate pathway (PPP) of S. cerevisiae was engineered for production of xylitol from D-glucose. Xylitol was formed from D-xylulose 5-phosphate in strains lacking transketolase activity and expressing the gene coding for XDH from P. stipitis. In addition to xylitol, ribitol, D-ribose and D-ribulose were also formed. Deletion of the xylulokinase-encoding gene increased xylitol production, whereas the expression of DOG1 coding for sugar phosphate phosphatase increased ribitol, D-ribose and D-ribulose production. Strains lacking phosphoglucose isomerase (Pgi1p) activity were shown to produce 5 carbon compounds through PPP when DOG1 was overexpressed. Expression of genes encoding glyceraldehyde 3-phosphate dehydrogenase of Bacillus subtilis, GapB, or NAD-dependent glutamate dehydrogenase Gdh2p of S. cerevisiae, altered the cellular redox balance and enhanced growth of pgi1 strains on D glucose, but co-expression with DOG1 reduced growth on higher D-glucose concentrations. Strains lacking both transketolase and phosphoglucose isomerase activities tolerated only low D-glucose concentrations, but the yield of 5-carbon sugars and sugar alcohols on D-glucose was about 50% (w/w).