22 resultados para spectral simulation
Resumo:
Yhteenveto: Vesistömalleihin perustuva vesistöjen seuranta- ja ennustejärjestelmä vesi- ja ympäristöhallinnossa
Resumo:
Gene mapping is a systematic search for genes that affect observable characteristics of an organism. In this thesis we offer computational tools to improve the efficiency of (disease) gene-mapping efforts. In the first part of the thesis we propose an efficient simulation procedure for generating realistic genetical data from isolated populations. Simulated data is useful for evaluating hypothesised gene-mapping study designs and computational analysis tools. As an example of such evaluation, we demonstrate how a population-based study design can be a powerful alternative to traditional family-based designs in association-based gene-mapping projects. In the second part of the thesis we consider a prioritisation of a (typically large) set of putative disease-associated genes acquired from an initial gene-mapping analysis. Prioritisation is necessary to be able to focus on the most promising candidates. We show how to harness the current biomedical knowledge for the prioritisation task by integrating various publicly available biological databases into a weighted biological graph. We then demonstrate how to find and evaluate connections between entities, such as genes and diseases, from this unified schema by graph mining techniques. Finally, in the last part of the thesis, we define the concept of reliable subgraph and the corresponding subgraph extraction problem. Reliable subgraphs concisely describe strong and independent connections between two given vertices in a random graph, and hence they are especially useful for visualising such connections. We propose novel algorithms for extracting reliable subgraphs from large random graphs. The efficiency and scalability of the proposed graph mining methods are backed by extensive experiments on real data. While our application focus is in genetics, the concepts and algorithms can be applied to other domains as well. We demonstrate this generality by considering coauthor graphs in addition to biological graphs in the experiments.
Resumo:
The aim of this study was to investigate powder and tablet behavior at the level of mechanical interactions between single particles. Various aspects of powder packing, mixing, compression, and bond formation were examined with the aid of computer simulations. The packing and mixing simulations were based on spring forces interacting between particles. Packing and breakage simulations included systems in which permanent bonds were formed and broken between particles, based on their interaction strengths. During the process, a new simulation environment based on Newtonian mechanics and elementary interactions between the particles was created, and a new method for evaluating mixing was developed. Powder behavior is a complicated process, and many of its aspects are still unclear. Powders as a whole exhibit some aspects of solids and others of liquids. Therefore, their physics is far from clear. However, using relatively simple models based on particle-particle interaction, many powder properties could be replicated during this work. Simulated packing densities were similar to values reported in the literature. The method developed for describing powder mixing correlated well with previous methods. The new method can be applied to determine mixing in completely homogeneous materials, without dividing them into different components. As such, it can describe the efficiency of the mixing method, regardless of the powder's initial setup. The mixing efficiency at different vibrations was examined, and we found that certain combinations of amplitude, direction, and frequencies resulted in better mixing while using less energy. Simulations using exponential force potentials between particles were able to explain the elementary compression behavior of tablets, and create force distributions that were similar to the pressure distributions reported in the literature. Tablet-breaking simulations resulted in breaking strengths that were similar to measured tablet breaking strengths. In general, many aspects of powder behavior can be explained with mechanical interactions at the particle level, and single particle properties can be reliably linked to powder behavior with accurate simulations.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
Tiivistelmä: Simulointimallin soveltaminen Pohjois-Päijänteellä
Resumo:
Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the connection of microscopic and macroscopic radiation effects, which is one objective in fusion reactor materials research.