47 resultados para origins
Resumo:
Cognitive impairments of attention, memory and executive functions are a fundamental feature of the pathophysiology of schizophrenia. The neurophysiological and neurochemical changes in the auditory cortex are shown to underlie cognitive impairmentsin schizophrenia patients. Functional state of the neural substrate of auditory information processing could be objectively and non-invasively probed with auditory event-related potentials (ERPs) and event- related fields (ERFs). In the current work, we explored the neurochemical effect on the neural origins of auditory information processing in relation to schizophrenia. By means of ERPs/ERFs we aimed to determine how neural substrates of auditory information processing are modulated by antipsychotic medication in schizophrenia spectrum patients (Studies I, II) and by neuropharmacological challenges in healthy human subjects (Studies III, IV). First, with auditory ERPs we investigated the effects of olanzapine (Study I) and risperidone (Study II) in a group of patients with schizophrenia spectrum disorders. After 2 and 4 weeks of treatment, olanzapine has no significant effects on mismatch negativity(MMN) and P300, which, as it has been suggested, respectively reflect preattentive and attention-dependent information processing. After 2 weeks of treatment, risperidone has no significant effect on P300, however risperidone reduces P200 amplitude. This latter effect of risperidone on neural resources responsible for P200 generation could be partly explained through the action of dopamine. Subsequently, we used simultaneous EEG/MEG to investigate the effects of memantine (Study III) and methylphenidate (Study IV) in healthy subjects. We found that memantine modulates MMN response without changing other ERP components. This could be interpreted as being due to the possible influence of memantine through the NMDA receptors on auditory change- detection mechanism, with processing of auditory stimuli remaining otherwise unchanged. Further, we found that methylphenidate does not modulate the MMN response. This finding could indicate no association between catecholaminergic activities and electrophysiological measures of preattentive auditory discrimination processes reflected in the MMN. However, methylphenidate decreases the P200 amplitudes. This could be interpreted as a modulation of auditory information processing reflected in P200 by dopaminergic and noradrenergic systems. Taken together, our set of studies indicates a complex pattern of neurochemical influences produced by the antipsychotic drugs in the neural substrate of auditory information processing in patients with schizophrenia spectrum disorders and by the pharmacological challenges in healthy subjects studied with ERPs and ERFs.
Resumo:
The major aim of this thesis was to examine the origins and distribution of uniparental and autosomal genetic variation among the Finno-Ugric-speaking human populations living in Boreal and Arctic regions of North Eurasia. In more detail, I aimed to disentangle the underlying molecular and population genetic factors which have produced the patterns of uniparental and autosomal genetic diversity in these populations. Among Finno-Ugrics the genetic amalgamation and clinal distribution of West and East Eurasian gene pools were observed within uniparental markers. This admixture indicates that North Eurasia was colonized through Central Asia/ South Siberia by human groups already carrying both West and East Eurasian lineages. The complex combination of founder effects, gene flow and genetic drift underlying the genetic diversity of the Finno-Ugric- speaking populations were emphasized by low haplotype diversity within and among uniparental and biparental markers. A high prevalence of lactase persistence allele among the North Eurasian Finno- Ugric agriculturalist populations was also shown indicating a local adaptation to subsistence change with lactose rich diet. Moreover, the haplotype background of lactase persistence allele among the Finno- Ugric-speakers strongly suggested that the lactase persistence T-13910 mutation was introduced independently more than once to the North Eurasian gene pool. A significant difference in genetic diversity, haplotype structure and LD distribution within the cytochrome P450 CYP2C and CYP2D regions revealed the unique gene pool of the Finno-Ugric Saami created mainly by population genetic processes compared to other Europeans and sub-Saharan Mandenka population. From all studied populations the Saami showed also significantly the highest allele frequency of a CYP2C19 gene mutation causing variable drug reactions. The diversity patterns observed within CYP2C and CYP2D regions emphasize the strong effect of demographic history shaping genetic diversity and LD especially among such small and constant size populations as the Finno-Ugric-speaking Saami. Moreover, the increased LD in Saami due to genetic drift and/or admixture was shown to offer an advantage for further attempts to identify alleles associated to common complex pharmacogenetic traits.
Resumo:
Theory of developmental origins of adult health and disease proposes that experiences during critical periods of early development may have consequences on health throughout a lifespan. Thesis studies aimed to characterize associations between early growth and some components of the metabolic syndrome cluster. Participants belong to two epidemiological cohorts with data on birth measurements and, for the younger cohort, on serial recordings of weight and height during childhood. They were born as singletons between 1924-33 and 1934-44 in the Helsinki University Central Hospital, and 500 and 2003 of them, respectively, attended clinical studies at the age of 65-75 and 56-70 years, respectively. In the 65-75 year old men and women, the well-known inverse relationship between birth weight and systolic blood pressure (SBP) was confined to people who had established hypertension. Among them a 1-kg increase in birth weight was associated with a 6.4-mmHg (95% CI: 1.0 to 11.9) decrease in SBP. This relationship was further confined to people with the prevailing Pro12Pro polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPARγ2) gene. People with low birth weight were more likely to receive angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers (ACEI/ARB, p=0.03), and, again, this relationship was confined to the carriers of the Pro12Pro (p=0.01 for interaction). These results suggest that the inverse association between birth weight and systolic BP becomes focused in hypertensive people because pathological features of BP regulation, associated with slow fetal growth, become self-perpetuating in adult life. Insulin resistance of the Pro12Pro carriers with low birth weight may interact with the renin-angiotensin system leading to raised BP levels. Habitual physical activity protected men and women who were small at birth, and thus at increased risk for the development of type 2 diabetes, against glucose intolerance more strongly. Among subjects with birth weight ≤3000 g, the odds ratio (OR) for glucose intolerance was 5.2 (95% CI: 2.1 to 13) in those who exercised less than 3 times per week compared to regular exercisers; in those who scored their exercise light compared with moderate exercisers (defined as comparable to brisk walking) the OR was 3.5 (1.5 to 8.2). In the 56-70 year old men a 1 kg increase in birth weight corresponded to a 4.1 kg (95% CI: 3.1 to 5.1) and in women to a 2.9 kg (2.1 to 3.6) increase in adult lean mass. Rapid gain in body mass index (BMI), i.e. crossing from an original BMI percentile to a higher one, before the age of 2 years increased adult lean mass index (LMI, lean mass/height squared) without excess fat accumulation whereas rapid gain in BMI during later childhood, despite the concurrent rise in LMI, resulted in a relatively higher increase in adult body fat mass. These findings illustrate how genes, the environment and their interactions, early growth patterns, and adult lifestyle modify adult health risks which originate from early life.
Resumo:
Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.
Resumo:
Identification of genes predisposing to tumor syndromes has raised general awareness of tumorigenesis. Genetic testing of tumor susceptibility genes aids the recognition of individuals at increased risk of tumors. Identification of novel predisposing genes enables further studies concerning the classification of potential associated tumors and the definition of target patient group. Pituitary adenomas are common, benign neoplasms accounting for approximately 15% of all intracranial tumors. Accurate incidence estimation is challenging since a great portion of these adenomas are small and asymptomatic. Clinically relevant adenomas, that cause symptoms due to the expansion of the cell mass or the over-secretion of normally produced hormones, occur in approximately one of 1 000 individuals. Although the majority of pituitary adenomas are sporadic, a minority occur as components of familial syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 syndrome is caused by germ-line mutations in the MEN1 gene, whereas most of the CNC patients carry the mutated protein kinase A (PKA) regulatory subunit-1-α (PRKAR1A) gene. Recently, other conditions predisposing to endocrine tumors have been identified: Pituitary Adenoma Predisposition (PAP) and MEN type 4 (MEN4). PAP was originally identified in a genetically homogeneous Finnish population. In a population based cohort from Northern Finland, aryl hydrocarbon receptor-interacting protein (AIP) gene mutations were found in 16% of all patients diagnosed with growth hormone (GH) producing pituitary adenoma, and in 40% of the subset of patients who were diagnosed under the age of 35 years. Since AIP mutations were originally described in a defined, homogeneous population from Northern Finland, it was relevant to study whether mutations also occur in more heterogeneous populations. In patient cohorts with different ethnic origins and variable clinical phenotypes, germ-line AIP mutations were detectable at low frequencies (range 0.8-7.4%). AIP mutation-positive patients were often diagnosed with a GH-producing adenoma at a young age, and usually had no family history of endocrine tumors. The low frequency of AIP mutations in randomly selected patients, and the lack of any family history of pituitary adenomas create a challenge for the identification of PAP patients. Our preliminary study suggests that AIP immunohistochemistry may serve as a pre-screening tool to distinguish between the AIP mutation-negative and the mutation-positive tumors. Tumors of various endocrine glands are components of MEN1 and CNC syndromes. Somatic MEN1 and PRKAR1A mutations in sporadic pituitary adenomas are rare, but occur in some of the other tumors related to these syndromes. The role of AIP mutations in endocrine neoplasia was studied and our results indicated that somatic AIP mutations are rare or non-existent in sporadic tumors of endocrine glands (0 of 111). Furthermore, germ-line AIP mutations in prolactin producing adenomas (2 of 9) confirmed the role of this pituitary tumor type in the PAP phenotype. Thyroid disorders are common in the general population, and the majority of them are sporadic. Interestingly, it has been suggested that thyroid disorders might be more common in PAP families. For this reason we studied germ-line AIP mutations in 93 index cases from familial non-medullary thyroid cancer (NMTC) families. The underlying gene or genes for familial NMTC have not been identified yet. None of the patients had any potentially pathogenic AIP mutation. This suggests that AIP is unlikely to play a role in familial NMTCs. A novel multiple endocrine syndrome was originally described in rats with phenotypic features of human MEN type 1 and 2. Germ-line mutations of cyclin-dependent kinase inhibitor 1B (CDKN1B also known as p27Kip1) gene were reported later in these rats and a germ-line mutation was also identified in one human family with MEN1-like phenotype (later named MEN4). To confirm the importance of this gene’s mutations in humans, we performed a mutation screening in MEN-like patients and in patients with pituitary adenoma. Our results indicate that CDKN1B/p27Kip1 mutations appear in a small portion of MEN1-like patients (one of 36), and that such mutations are rare or non-existent in both familial (0 of 19) and sporadic pituitary adenoma patients (0 of 50). In conclusion, this work strengthens the tumor susceptibility role of AIP and CDKN1B/p27Kip1 in endocrine neoplasia. Clarifying the PAP phenotype facilitates the identification of potential AIP mutation carriers. Genetic counseling can be offered to the relatives and follow-up of the mutation carriers can be organized, hence an earlier diagnosis is feasible.
Resumo:
Rapid change in climate is challenge for the adaptation of forest trees in the future. In wind pollinated tree species pollen mediated long distance gene flow may provide alleles that are (pre)adapted to a future climate. In order to examine the long distance pollen flow in Scots pine (Pinus sylvestris L.), we measured the amount and viability of airborne pollen and flowering phenology in central, northern, and northernmost Finland during four years. Viable airborne pollen grains were detected during female flowering and before local pollen shedding in all study sites. The situation when there was nonlocal pollen in the air lasted from one to four days depending on the year and study site. The amount of nonlocal airborne pollen varied also between years and study sites, the total amount of nonlocal viable pollen in the air was 2.3% from all detected viable pollen grains. The effect of pollen origin on seeds siring ability was studied with artificial pollination experiments. Pollen genotypes originating from southern Finland sired 76% and 48 % of the analysed seeds in competition studies where both pollen origin were introduced simultaneously into the female strobili. We examined the importance of arrival order of pollen grains in to the strobili in a study where pollen genotypes of different origin were introduced in two hours interval. Northern genotypes sired 76% of the analysed seeds when it was injected first, but in the "southern first" experiment both pollen types sired equal amount of seeds. The first pollen grain in the pollen chamber do not always fertilizes the ovum, instead there likely is more complex way of competition between pollen grains. To examine chemically mediated pollen-pollen interactions we conducted in vitro germination experiment where different pollen genotypes had chemical but not physical contact. Both positive and negative effects of interactions were found. We found highly negative effects in germinability of northern pollen grains when they were germinating with southern pollen, and increase in the germinability of southern pollen. There were no variation in the size of the dry pollen grains between pollen origins, and minor variation between different genotypes. After hydration and germination northern pollen grains were larger than southern pollen. Pollen genotypes having high hydration rates had low germinability and tube growth rate, however, germinated pollen grains were larger in size than nongerminated. This supports the suggestion that the early germination and growth of pollen tube is dependent on pollen storage materialsand less dependent on water intake and hydration. Long distance pollen movements and good competition ability of southern pollen makes gene flow possible, although rising temperature and timing of pollen movements may affect pollen competition and the amount of gene flow.
Resumo:
The aim of this thesis was to increase our knowledge about the effects of seed origin on the timing of height growth cessation and field performance of silver birch from different latitudes, with special attention paid to the browsing damage by moose in young birch plantations. The effect of seed origin latitude and sowing time on timing of height growth cessation of first-year seedlings was studied in a greenhouse experiment with seven seed origins (lat. 58º - 67ºN). Variation in critical night length (CNL) for 50 % bud set within two latitudinally distant stands (60º and 67ºN) was studied in three phytotron experiments. Browsing by moose on 5-11 -year-old silver birch saplings from latitudinally different seed origins (53º - 67ºN) was studied in a field experiment in southern Finland. Yield and stem quality of 22-year-old silver birch trees of Baltic, Finnish and Russian origin (54º - 63ºN) and the effect of latitudinal seed transfers were studied in two provenance trials at Tuusula, southern and Viitasaari, central Finland. The timing of height growth cessation depended systematically on latitude of seed origin and sowing date. The more northern the seed origin, the earlier the growth cessation and the shorter the growth period. Later sowing dates delayed growth cessation but also shortened the growth period. The mean CNL of the southern ecotype was longer, 6.3 ± 0.2 h (95 % confidence interval), than that of the northern ecotype, 3.1 ± 0.3 h. Within-ecotype variance of the CNL was higher in the northern ecotype (0.484 h2) than in the southern ecotype (0.150 h2). Browsing by moose decreased with increasing latitude of seed origin and sapling height. Origins transferred from more southern latitudes were more heavily browsed than the more northern native ones. Southern Finnish seed origins produced the highest volume per unit area in central Finland (lat. 63º11'N). Estonian and north Latvian stand seed origins, and the southern Finnish plus tree origins, were the most productive ones in southern Finland (lat. 60º21'N). Latitudinal seed transfer distance had a significant effect on survival, stem volume/ha and proportion of trees with a stem defect. The relationship of both survival and stem volume/ha to the latitudinal seed transfer distance was curvilinear. Volume was increased by transferring seed from ca. 2 degrees of latitude from the south. A longer transfer from the south, and transfer from the north, decreased the yield. The proportion of trees with a stem defect increased linearly in relation to the latitudinal seed transfer distance from the south.
Resumo:
B. cereus is one of the most frequent occurring bacteria in foods . It produces several heat-labile enterotoxins and one stable non-protein toxin, cereulide (emetic), which may be pre-formed in food. Cereulide is a heat stable peptide whose structure and mechanism of action were in the past decade elucidated. Until this work, the detection of cereulide was done by biological assays. With my mentors, I developed the first quantitative chemical assay for cereulide. The assay is based on liquid chromatography (HPLC) combined with ion trap mass spectrometry and the calibration is done with valinomycin and purified cereulide. To detect and quantitate valinomycin and cereulide, their [NH4+] adducts, m/z 1128.9 and m/z 1171 respectively, were used. This was a breakthrough in the cereulide research and became a very powerful tool of investigation. This tool made it possible to prove for the first time that the toxin produced by B. cereus in heat-treated food caused human illness. Until this thesis work (Paper II), cereulide producing B. cereus strains were believed to represent a homogenous group of clonal strains. The cereulide producing strains investigated in those studies originated mostly from food poisoning incidents. We used strains of many origins and analyzed them using a polyphasic approach. We found that the cereulide producing B. cereus strains are genetically and biologically more diverse than assumed in earlier studies. The strains diverge in the adenylate kinase (adk) gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three patterns), tyrosin decomposition, haemolysis and lecithine hydrolysis (two phenotypes). Our study was the first demonstration of diversity within the cereulide producing strains of B. cereus. To manage the risk for cereulide production in food, understanding is needed on factors that may upregulate cereulide production in a given food matrix and the environmental factors affecting it. As a contribution towards this direction, we adjusted the growth environment and measured the cereulide production by strains selected for diversity. The temperature range where cereulide is produced was narrower than that for growth for most of the producer strains. Most cereulide was by most strains produced at room temperature (20 - 23ºC). Exceptions to this were two faecal isolates which produced the same amount of cereulide from 23 ºC up until 39ºC. We also found that at 37º C the choice of growth media for cereulide production differed from that at the room temperature. The food composition and temperature may thus be a key for understanding cereulide production in foods as well as in the gut. We investigated the contents of [K+], [Na+] and amino acids of six growth media. Statistical evaluation indicated a significant positive correlation between the ratio [K+]:[Na+] and the production of cereulide, but only when the concentrations of glycine and [Na+] were constant. Of the amino acids only glycine correlated positively with high cereulide production. Glycine is used worldwide as food additive (E 640), flavor modifier, humectant, acidity regulator, and is permitted in the European Union countries, with no regulatory quantitative limitation, in most types of foods. B. subtilis group members are endospore-forming bacteria ubiquitous in the environment, similar to B. cereus in this respect. Bacillus species other than B. cereus have only sporadically been identified as causative agents of food-borne illnesses. We found (Paper IV) that food-borne isolates of B. subtilis and B. mojavensis produced amylosin. It is possible that amylosin was the agent responsible for the food-borne illness, since no other toxic substance was found in the strains. This is the first report on amylosin production by strains isolated from food. We found that the temperature requirement for amylosin production was higher for the B. subtilis strain F 2564/96, a mesophilic producer, than for B. mojavensis strains eela 2293 and B 31, psychrotolerant producers. We also found that an atmosphere with low oxygen did not prevent the production of amylosin. Ready-to-eat foods packaged in micro-aerophilic atmosphere and/or stored at temperatures above 10 °C, may thus pose a risk when toxigenic strains of B. subtilis or B. mojavensis are present.
Resumo:
Composting is the biological conversion of solid organic waste into usable end products such as fertilizers, substrates for mushroom production and biogas. Although composts are highly variable in their bulk composition, composting material is generally based on lignocellulose compounds derived from agricultural, forestry, fruit and vegetable processing, household and municipal wastes. Lignocellulose is very recalcitrant; however it is rich and abundant source of carbon and energy. Therefore lignocellulose degradation is essential for maintaining the global carbon cycle. In compost, the active component involved in the biodegradation and conversion processes is the resident microbial population, among which microfungi play a very important role. In composting pile the warm, humid, and aerobic environment provides the optimal conditions for their development. Microfungi use many carbon sources, including lignocellulosic polymers and can survive in extreme conditions. Typically microfungi are responsible for compost maturation. In order to improve the composting process, more information is needed about the microbial degradation process. Better knowledge on the lignocellulose degradation by microfungi could be used to optimize the composting process. Thus, this thesis focused on lignocellulose and humic compounds degradation by a microfungus Paecilomyces inflatus, which belongs to a flora of common microbial compost, soil and decaying plant remains. It is a very common species in Europe, North America and Asia. The lignocellulose and humic compounds degradation was studied using several methods including measurements of carbon release from 14C-labelled compounds, such as synthetic lignin (dehydrogenative polymer, DHP) and humic acids, as well as by determination of fibre composition using chemical detergents and sulphuric acid. Spectrophotometric enzyme assays were conducted to detect extracellular lignocellulose-degrading hydrolytic and oxidative enzymes. Paecilomyces inflatus secreted clearly extracellular laccase to the culture media. Laccase was involved in the degradation process of lignin and humic acids. In compost P. inflatus mineralised 6-10% of 14C-labelled DHP into carbon dioxide. About 15% of labelled DHP was converted into water-soluble compounds. Also humic acids were partly mineralised and converted into water-soluble material, such as low-molecular mass fulvic acid-like compounds. Although laccase activity in aromatics-rich compost media clearly is connected with the degradation process of lignin and lignin-like compounds, it may preferentially effect the polymerisation and/or detoxification of such aromatic compounds. P. inflatus can degrade lignin and carbohydrates also while growing in straw and in wood. The cellulolytic enzyme system includes endoglucanase and β-glucosidase. In P. inflatus the secretion of these enzymes was stimulated by low-molecular-weight aromatics, such as soil humic acid and veratric acid. When strains of P. inflatus from different ecophysiological origins were compared, indications were found that specific adaptation strategies needed for lignocellulosics degradation may operate in P. inflatus. The degradative features of these microfungi are on relevance for lignocellulose decomposition in nature, especially in soil and compost environments, where basidiomycetes are not established. The results of this study may help to understand, control and better design the process of plant polymer conversion in compost environment, with a special emphasis on the role of ubiquitous microfungi.
Resumo:
Nisäkkäiden levinneisyyteen, niiden morfologisiin ja ekologisiin piirteisiin vaikuttavat ympäristön sekä lyhyet että pitkäkestoiset muutokset, etenkin ilmaston ja kasvillisuuden vaihtelut. Työssä tutkittiin nisäkkäiden sopeutumista ilmastonmuutoksiin Euraasiassa viimeisen 24 miljoonan vuoden aikana. Tutkimuksessa keskityttiin varsinkin viimeiseen kahteen miljoonaan vuoteen, jonka aikana ilmasto muuttui voimakkaasti ja ihmisen toiminta alkoi tulla merkittäväksi. Tämän takia on usein vaikea erottaa, kummasta em. seikasta jonkin nisäkäslajin sukupuutto tai häviäminen alueelta johtui. Aineistona käytettiin laajaa venäjänkielistä kirjallisuutta, josta löytyvät tiedot ovat kääntämättöminä jääneet aiemmin länsimaisen tutkimuksen ulkopuolelle. Työssä käytettiin myös NOW-tietokantaa, jossa on fossiilisten nisäkkäiden löytöpaikat sekä niiden iät.
Resumo:
The present study examines how the landscape of the rural immigrant colony of New Finland (Saskatchewan, Canada) has reflected the Finnish origins of the about 350 settlers and their descendants, their changing ideologies, values, sense of collectiveness and the meanings of the Finnish roots. The study also reveals the reasons and power structures behind the ethnic expressions. Researched time period runs from the beginning of the settlement in 1888 to the turn of the millennium. The research concentrates on buildings, cemeteries, personal names and place names which contain strong visual and symbolic messages and are all important constituents of mundane landscapes. For example, the studied personal names are important identity-political indexes telling about the value of the Finnish nationalism, community spirit, dual Finnish-Canadian identities and also the process of assimilation which, for example, had differences between genders. The study is based on empirical field research, and iconographical and textual interpretations supported by classifications and comparative analyses. Several interviews and literature were essential means of understanding the changing political contexts which influenced the Finnish settlement and its multiple landscape representations. Five historical landscape periods were identified in New Finland. During these periods the meanings and representations of Finnish identity changed along with national and international politics and local power structures. For example, during the Second World War Canada discouraged representations of Finnish culture because Finland and Canada were enemies. But Canada s multicultural policy in the 1980s led to several material and symbolic representations indicating the Finnish settlement after a period of assimilation and deinstitutionalization. The study shows how these representations were indications of the politics of a (selective) memory. Especially Finnish language, cultural traditions and the Evangelical-Lutheran values of the pioneers, which have been passed down to new generations, are highly valued part of the Finnish heritage. Also the work of the pioneers and their participation in the building of Saskatchewan is an important collective narrative. The selectiveness of a memory created the landscape of forgetting which includes deliberately forgotten parts of the history. For example, the occasional disputes between the congregations are something that has been ignored. The results show how the different landscape elements can open up a useful perspective to diaspora colonies or other communities also by providing information which otherwise would be indistinguishable. In this case, for example, two cemeteries close together were a sign of religious distributions among the early settlers.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
In this study we used electro-spray ionization mass-spectrometry to determine phospholipid class and molecular species compositions in bacteriophages PM2, PRD1, Bam35 and phi6 as well as their hosts. To obtain compositional data of the individual leaflets, phospholipid transbilayer distribution in the viral membranes was studied. We found that 1) the membranes of all studied bacteriophage are enriched in PG as compared to the host membranes, 2) molecular species compositions in the phage and host membranes are similar, and 3) phospholipids in the viral membranes are distributed asymmetrically with phosphatidylglycerol enriched in the outer leaflet and phosphatidylethanolamine in the inner one (except Bam35). Alternative models for selective incorporation of phospholipids to phages and for the origins of the asymmetric phospholipid transbilayer distribution are discussed. Notably, the present data are also useful when constructing high resolution structural models of bacteriophages, since diffraction methods cannot provide a detailed structure of the membrane due to high motility of the lipids and lack of symmetric organization of membrane proteins.
Resumo:
Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the vertebrate brain. In the midbrain, GABAergic neurons contribute to the regulation of locomotion, nociception, defensive behaviours, fear and anxiety, as well as sensing reward and addiction. Despite the clinical relevance of this group of neurons, the mechanisms regulating their development are largely unknown. In addition, their migration and connectivity patterns are poorly characterized. This study focuses on the molecular mechanisms specifying the GABAergic fate, and the developmental origins of midbrain GABAergic neurons. First, we have characterized the function of a zink-finger transcription factor Gata2. Using a tissue-specific mutagenesis in mouse midbrain and anteror hindbrain, we showed that Gata2 is a crucial determinant of the GABAergic fate in midbrain. In the absence of Gata2, no GABAergic neurons are produced from the otherwise competent midbrain neuroepithelium. Instead, the Gata2-mutant cells acquire a glutamatergic neuron phenotype. Ectopic expression of Gata2 was also sufficient to induce GABAergic in chicken midbrain. Second, we have analyzed the midbrain phenotype of mice mutant for a proneural gene Ascl1, and described the variable and region-dependent requirements for Ascl1 in the midbrain GABAergic neurogenesis. These studies also have implications on the origin of distinct anatomical and functional GABAergic subpopulations in midbrain. Third, we have identified unique developmental properties of GABAergic neurons that are associated with the midbrain dopaminergic nuclei, the substantia nigra pars reticulata (SNpr) and ventral tegmental area (VTA). Namely, the genetic regulation of GABAergic fate in these cells is distinct from the rest of midbrain. In accordance to this phenomenon, our detailed fate-mapping analyses indicated that the SNpr-VTA GABAergic neurons are generated outside midbrain, in the neuroepithelium of anterior hindbrain.
Resumo:
Protein conformations and dynamics can be studied by nuclear magnetic resonance spectroscopy using dilute liquid crystalline samples. This work clarifies the interpretation of residual dipolar coupling data yielded by the experiments. It was discovered that unfolded proteins without any additional structure beyond that of a mere polypeptide chain exhibit residual dipolar couplings. Also, it was found that molecular dynamics induce fluctuations in the molecular alignment and doing so affect residual dipolar couplings. The finding clarified the origins of low order parameter values observed earlier. The work required the development of new analytical and computational methods for the prediction of intrinsic residual dipolar coupling profiles for unfolded proteins. The presented characteristic chain model is able to reproduce the general trend of experimental residual dipolar couplings for denatured proteins. The details of experimental residual dipolar coupling profiles are beyond the analytical model, but improvements are proposed to achieve greater accuracy. A computational method for rapid prediction of unfolded protein residual dipolar couplings was also developed. Protein dynamics were shown to modulate the effective molecular alignment in a dilute liquid crystalline medium. The effects were investigated from experimental and molecular dynamics generated conformational ensembles of folded proteins. It was noted that dynamics induced alignment is significant especially for the interpretation of molecular dynamics in small, globular proteins. A method of correction was presented. Residual dipolar couplings offer an attractive possibility for the direct observation of protein conformational preferences and dynamics. The presented models and methods of analysis provide significant advances in the interpretation of residual dipolar coupling data from proteins.