42 resultados para neuronal injury


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying neurodegeneration provides an opportunity to gain insights into normal cell physiology, and not just pathophysiology. In this thesis work the focus is on Infantile Neuronal Ceroid Lipofuscinosis (INCL). It is a recessively inherited lysosomal storage disorder. The disease belongs to the neuronal ceroid lipofuscinoses (NCLs), a group of common progressive neurodegenerative diseases of the childhood. Characteristic accumulation of autofluorescent storage material is seen in most tissues but only neurons of the central nervous system are damaged and eventually lost during the course of the disease leaving most other cell types unaffected. The disease is caused by mutations in the CLN1 gene, but the physiological function of the corresponding protein the palmitoyl protein thioesterase (PPT1) has remained elusive. The aim of this thesis work was to shed light on the molecular and cell biological mechanisms behind INCL. This study pinpointed the localization of PPT1 in axonal presynapses of neurons. It also established the role of PPT1 in early neuronal maturation as well as importance in mature neuronal synapses. This study revealed an endocytic defect in INCL patient cells manifesting itself as delayed trafficking of receptor and non-receptor mediated endocytic markers. Furthermore, this study was the first to connect the INCL storage proteins the sphingolipid activator proteins (SAPs) A and D to pathological events on the cellular level. Abnormal endocytic processing and intracellular re-localization was demonstrated in patient cells and disease model knock-out mouse neurons. To identify early affected cellular and metabolic pathways in INCL, knock-out mouse neurons were studied by global transcript profiling and functional analysis. The gene expression analysis revealed changes in neuronal maturation and cell communication strongly associated with the regulated secretory system. Furthermore, cholesterol metabolic pathways were found to be affected. Functional studies with the knock-out mouse model revealed abnormalities in neuronal maturation as well as key neuronal functions including abnormalities in intracellular calcium homeostasis and cholesterol metabolism. Together the findings, introduced in this thesis work, support the essential role of PPT1 in developing neurons as well as synaptic sites of mature neurons. Results of this thesis also elucidate early events in INCL pathogenesis revealing defective pathways ultimately leading to the neurodegenerative process. These results contribute to the understanding of the vital physiological function of PPT1 and broader knowledge of common cellular mechanisms behind neurodegeneration. These results add to the knowledge of these severe diseases offering basis for new approaches in treatment strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factors (NTFs) and the extracellular matrix (ECM) are important regulators of axonal growth and neuronal survival in mammalian nervous system. Understanding of the mechanisms of this regulation is crucial for the development of posttraumatic therapies and drug intervention in the injured nervous system. NTFs act as soluble, target-derived extracellular regulatory molecules for a wide range of physiological functions including axonal guidance and the regulation of programmed cell death in the nervous system. The ECM determines cell adhesion and regulates multiple physiological functions via short range cell-matrix interactions. The present work focuses on the mechanisms of the action of NTFs and the ECM on axonal growth and survival of cultured sensory neurons from dorsal root ganglia (DRG). We first examined signaling mechanisms of the action of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) on axonal growth. GDNF, neurturin (NRTN) and artemin (ART) but not persephin (PSPN) promoted axonal initiation in cultured DRG neurons from young adult mice. This effect required Src family kinase (SFK) activity. In neurons from GFRalpha2-deficient mice, NRTN did not significantly promote axonal initiation. GDNF and NRTN induced extensive lamellipodia formation on neuronal somata and growth cones. This study suggested that GDNF, NRTN and ARTN may serve as stimulators of nerve regeneration under posttraumatic conditions. Consequently we studied the convergence of signaling pathways induced by NTFs and the ECM molecule laminin in the intracellular signaling network that regulates axonal growth. We demonstrated that co-stimulation of DRG neurons with NTFs (GDNF, NRTN or nerve growth factor (NGF)) and laminin leads to axonal growth that requires activation of SFKs. A different, SFK-independent signaling pathway evoked axonal growth on laminin in the absence of the NTFs. In contrast, axonal branching was regulated by SFKs both in the presence and in the absence of NGF. We proposed and experimentally verified a Boolean model of the signaling network triggered by NTFs and laminin. Our results put forward an approach for predictable, Boolean logics-driven pharmacological manipulation of a complex signaling network. Finally we found that N-syndecan, the receptor for the ECM component HB-GAM was required for the survival of neonatal sensory neurons in vitro. We demonstrated massive cell death of cultured DRG neurons from mice deficient in the N-syndecan gene as compared to wild type controls. Importantly, this cell death could not be prevented by NGF the neurotrophin which activates multiple anti-apoptotic cascades in DRG neurons. The survival deficit was observed during first postnatal week. By contrast, DRG neurons from young adult N-syndecan knock-out mice exhibited normal survival. This study identifies a completely new syndecan-dependent type of signaling that regulates cell death in neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K-Cl cotransporter 2 (KCC2) maintains a low intracellular Cl concentration required for fast hyperpolarizing responses of neurons to classical inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine. Decreased Cl extrusion observed in genetically modified KCC2-deficient mice leads to depolarizing GABA responses, impaired brain inhibition, and as a consequence to epileptic seizures. Identification of mechanisms regulating activity of the SLC12A5 gene, which encodes the KCC2 cotransporter, in normal and pathological conditions is, thus, of extreme importance. Multiple reports have previously elucidated in details a spatio-temporal pattern of KCC2 expression. Among the characteristic features are an exclusive neuronal specificity, a dramatic upregulation during embryonic and early postnatal development, and a significant downregulation by neuronal trauma. Numerous studies confirmed these expressional features, however transcriptional mechanisms predetermining the SLC12A5 gene behaviour are still unknown. The aim of the presented thesis is to recognize such transcriptional mechanisms and, on their basis, to create a transcriptional model that would explain the established SLC12A5 gene behaviour. Up to recently, only one KCC2 transcript has been thought to exist. A particular novelty of the presented work is the identification of two SLC12A5 gene promoters (SLC12A5-1a and SLC12A5-1b) that produce at least two KCC2 isoforms (KCC2a and KCC2b) differing by their N-terminal parts. Even though a functional 86Rb+ assay reveals no significant difference between transport activities of the isoforms, consensus sites for several protein kinases, found in KCC2a but not in KCC2b, imply a distinct kinetic regulation. As a logical continuation, the current work presents a detailed analysis of the KCC2a and KCC2b expression patterns. This analysis shows an exclusively neuron-specific pattern and similar expression levels for both isoforms during embryonic and neonatal development in rodents. During subsequent postnatal development, the KCC2b expression dramatically increases, while KCC2a expression, depending on central nervous system (CNS) area, either remains at the same level or moderately decreases. In an attempt to explain both the neuronal specificity and the distinct expressional kinetics of the KCC2a and KCC2b isoforms during postnatal development, the corresponding SLC12A5-1a and SLC12A5-1b promoters have been subjected to a comprehensive bioinformatical analysis. Binding sites of several transcription factors (TFs), conserved in the mammalian SLC12A5 gene orthologs, have been identified that might shed light on the observed behaviour of the SLC12A5 gene. Possible roles of these TFs in the regulating of the SLC12A5 gene expression have been elucidated in subsequent experiments and are discussed in the current thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain function is critically dependent on the ionic homeostasis in both the extra- and intracellular compartment. The regulation of brain extracellular ionic composition mainly relies on active transport at blood brain and at blood cerebrospinal fluid interfaces whereas intracellular ion regulation is based on plasmalemmal transporters of neurons and glia. In addition, the latter mechanisms can generate physiologically as well as pathophysiologically significant extracellular ion transients. In this work I have studied molecular mechanisms and development of ion regulation and how these factors alter neuronal excitability and affect synaptic and non-synaptic transmission with a particular emphasis on intracellular pH and chloride (Cl-) regulation. Why is the regulation of acid-base equivalents (H+ and HCO3-) and Cl- of such interest and importance? First of all, GABAA-receptors are permeable to both HCO3- and Cl-. In the adult mammalian central nervous system (CNS) fast postsynaptic inhibition relies on GABAA-receptor mediated transmission. Today, excitatory effects of GABAA-receptors, both in mature neurons and during the early development, have been recognized and the significance of the dual actions of GABA on neuronal communication has become an interesting field of research. The transmembrane gradients of Cl- and HCO3- determine the reversal potential of GABAA-receptor mediated postsynaptic potentials and hence, the function of pH and Cl- regulatory proteins have profound consequences on GABAergic signaling and neuronal excitability. Secondly, perturbations in pH can cause a variety of changes in cellular function, many of them resulting from the interaction of protons with ionizable side chains of proteins. pH-mediated alterations of protein conformation in e.g. ion channels, transporters, and enzymes can powerfully modulate neurotransmission. In the context of pH homeostasis, the enzyme carbonic anhydrase (CA) needs to be taken into account in parallel with ion transporters: for CO2/HCO3- buffering to act in a fast manner, CO2 (de)hydration must be catalyzed by this enzyme. The acid-base equivalents that serve as substrates in the CO2 dehydration-hydration reaction are also engaged in many carrier and channel mediated ion movements. In such processes, CA activity is in key position to modulate transmembrane solute fluxes and their consequences. The bicarbonate transporters (BTs; SLC4) and the electroneutral cation-chloride cotransporters (CCCs; SLC12) belong the to large gene family of solute carriers (SLCs). In my work I have studied the physiological roles of the K+-Cl- cotransporter KCC2 (Slc12a5) and the Na+-driven Cl--HCO3- exchanger NCBE (Slc4a10) and the roles of these two ion transporters in the modualtion of neuronal communication and excitability in the rodent hippocampus. I have also examined the cellular localization and molecular basis of intracellular CA that has been shown to be essential for the generation of prolonged GABAergic excitation in the mature hippocampus. The results in my Thesis provide direct evidence for the view that the postnatal up-regulation of KCC2 accounts for the developmental shift from depolarizing to hyperpolarizing postsynaptic EGABA-A responses in rat hippocampal pyramidal neurons. The results also indicate that after KCC2 expression the developmental onset of excitatory GABAergic transmission upon intense GABAA-receptor stimulation depend on the expression of intrapyramidal CA, identified as the CA isoform VII. Studies on mice with targeted Slc4a10 gene disruption revealed an important role for NCBE in neuronal pH regulation and in pH-dependent modulation of neuronal excitability. Furthermore, this ion transporter is involved in the basolateral Na+ and HCO3- uptake in choroid plexus epithelial cells, and is thus likely to contribute to cerebrospinal fluid production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile neuronal ceroid lipofuscinosis (JNCL) is one of the most common neurodegenerative diseases in childhood. Its clinical onset, with visual failure as the first sign, is between the ages of 4 to 8 years. During the disease progress, epilepsy, motor symptoms, cognitive decline, and psychiatric symptoms become apparent. It leads to premature death between ages 15 and 30. Treatment consists of symptomatic drug administration and various forms of rehabilitation, but to date, no curative treatment exists. To gain a more comprehensive picture of psychiatric problems, symptoms were evaluated by the Child Behavior Checklist, the Teacher Report Form, and the Children s Depression Inventory. The JNCL patients had a great number of severe psychiatric symptoms, with wide inter-individual variability. The most common symptoms were social, thought, attention, and sleep problems, somatic complaints, and aggressive behaviour. Patients with psychotropic treatment had more problems than did those without psychotropic treatment, and female patients had more problems than did males. Between 10 and 20% of the patients reported depressive symptoms. In a 5-year follow-up, [123I]β-CIT SPECT and MRI revealed a tendency of decreasing serotonin transporter (SERT) availability and progressive brain atrophy. The correlation between changes in midbrain SERT and total brain volume was positive; no correlation appeared between SERT or brain atrophy and depressive symptoms. Thus, it seems likely that the low SERT availability is associated with progressive brain atrophy; it may also predispose towards depression, however. An open survey of psychotropic drugs and their efficacy was performed on JNCL patients in Finland. The most commonly used psychotropic drugs were the antidepressant citalopram and the antipsychotic risperidone. Their efficacy was good or satisfactory in the majority of cases and they seemed well tolerated. Quetiapine had a marked effect on one patient with a history of severe psychotic symptoms. Glutamate decarboxylase 65 autoantibodies (GAD65ab), found in JNCL patients, indicate that an immunomediated reaction against GAD or GABAergic neurons may play a part in the underlying pathogenetic mechanism. GAD65ab s also appeared in the serum of all eight JNCL patients included and intermittent corticosteroid therapy was initiated in all cases. After one year, the GAD65ab s had disappeared in the two oldest patients, who experienced an improvement in motor symptoms and alertness associated with their prednisolone therapy. Two younger patients experienced a significant IQ increase, but no change in GADab s. A randomized study with longer follow-up time is needed, however, to clarify the effect of prednisolone on disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stroke, ischemic or hemorrhagic, belongs among the foremost causes of death and disability worldwide. Massive brain swelling is the leading cause of death in large hemispheric strokes and is only modestly alleviated by available treatment. Thrombolysis with tissue plasminogen activator (TPA) is the only approved therapy in acute ischemic stroke, but fear of TPA-mediated hemorrhage is often a reason for withholding this otherwise beneficial treatment. In addition, recanalization of the occluded artery (spontaneously or with thrombolysis) may cause reperfusion injury by promoting brain edema, hemorrhage, and inflammatory cell infiltration. A dominant event underlying these phenomena seems to be disruption of the blood-brain barrier (BBB). In contrast to ischemic stroke, no widely approved clinical therapy exists for intracerebral hemorrhage (ICH), which is associated with poor outcome mainly due to the mass effect of enlarging hematoma and associated brain swelling. Mast cells (MCs) are perivascularly located resident inflammatory cells which contain potent vasoactive, proteolytic, and fibrinolytic substances in their cytoplasmic granules. Experiments from our laboratory showed MC density and their state of granulation to be altered early following focal transient cerebral ischemia, and degranulating MCs were associated with perivascular edema and hemorrhage. (I) Pharmacological MC stabilization led to significantly reduced ischemic brain swelling (40%) and BBB leakage (50%), whereas pharmacological MC degranulation raised these by 90% and 50%, respectively. Pharmacological MC stabilization also revealed a 40% reduction in neutrophil infiltration. Moreover, genetic MC deficiency was associated with an almost 60% reduction in brain swelling, 50% reduction in BBB leakage, and 50% less neutrophil infiltration, compared with controls. (II) TPA induced MC degranulation in vitro. In vivo experiments with post-ischemic TPA administration demonstrated 70- to 100-fold increases in hemorrhage formation (HF) compared with controls HF. HF was significantly reduced by pharmacological MC stabilization at 3 (95%), 6 (75%), and 24 hours (95%) of follow-up. Genetic MC deficiency again supported the role of MCs, leading to 90% reduction in HF at 6 and 24 hours. Pharmacological MC stabilization and genetic MC deficiency were also associated with significant reduction in brain swelling and in neutrophil infiltration. Importantly, these effects translated into a significantly better neurological outcome and lower mortality after 24 hours. (III) Finally, in ICH experiments, pharmacological MC stabilization resulted in significantly less brain swelling, diminished growth in hematoma volume, better neurological scores, and decreased mortality. Pharmacological MC degranulation produced the opposite effects. Genetic MC deficiency revealed a beneficial effect similar to that found with pharmacological MC stabilization. In sum, the role of MCs in these clinically relevant scenarios is supported by a series of experiments performed both in vitro and in vivo. That not only genetic MC deficiency but also drugs targeting MCs could modulate these parameters (translated into better outcome and decreased mortality), suggests a potential therapeutic approach in a number of highly prevalent cerebral insults in which extensive tissue injury is followed by dangerous brain swelling and inflammatory cell infiltration. Furthermore, these experiments could hint at a novel therapy to improve the safety of thrombolytics, and a potential cellular target for those seeking novel forms of treatment for ICH.