21 resultados para lipid fraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we used electro-spray ionization mass-spectrometry to determine phospholipid class and molecular species compositions in bacteriophages PM2, PRD1, Bam35 and phi6 as well as their hosts. To obtain compositional data of the individual leaflets, phospholipid transbilayer distribution in the viral membranes was studied. We found that 1) the membranes of all studied bacteriophage are enriched in PG as compared to the host membranes, 2) molecular species compositions in the phage and host membranes are similar, and 3) phospholipids in the viral membranes are distributed asymmetrically with phosphatidylglycerol enriched in the outer leaflet and phosphatidylethanolamine in the inner one (except Bam35). Alternative models for selective incorporation of phospholipids to phages and for the origins of the asymmetric phospholipid transbilayer distribution are discussed. Notably, the present data are also useful when constructing high resolution structural models of bacteriophages, since diffraction methods cannot provide a detailed structure of the membrane due to high motility of the lipids and lack of symmetric organization of membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reconstruct B+/- -> D K+/- decays in a data sample collected by the CDF II detector at the Tevatron collider corresponding to 1 fb-1 of integrated luminosity. We select decay modes where the D meson decays to either K- pi+ (flavor eigenstate) or K- K+, pi- pi+ (CP-even eigenstates), and measure the direct CP asymmetry A_CP+ = 0.39 +/- 0.17(stat) +/- 0.04(syst), and the double ratio of CP-even to flavor eigenstate branching fractions R_CP+ = 1.30 +/- 0.24(stat) +/- 0.12(syst). These measurements will improve the determination of the CKM angle gamma. They are performed here for the first time using data from hadron collisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite its bad reputation in the mass media, cholesterol is an indispensable constituent of cellular membranes and vertebrate life. It is, however, also potentially lethal as it may accumulate in the arterial intima causing atherosclerosis or elsewhere in the body due to inherited conditions. Studying cholesterol in cells, and research on how the cell biology of cholesterol affects on system level is essential for a better understanding of the disease states associated with cholesterol and for the development of new therapies for these conditions. On its way to the cell, exogenous cholesterol traverses through endosomes, transport vesicles involved in internalizing material to cells, and needs to be transported out of this compartment. This endosomal pool of cholesterol is important for understanding both the common disorders of metabolism and the more rare hereditary disorders of cholesterol metabolism. The study of cholesterol in cells has been hampered by the lack of bright fluorescent sterol analogs that would resemble cholesterol enough to be used in cellular studies. In the first study of my thesis, we present a new sterol analog, Boron-Dipyrromethene (BODIPY)-cholesterol for visualizing sterols in living cells and organism. This fluorescent cholesterol derivative is shown to behave similarly to cholesterol both by atomic scale computer simulations and biochemical experiments. We characterize its localization inside different types of living cells and show that it can be used to study sterol trafficking in living organisms. Two sterol binding proteins associated with the endosomal membrane; the Niemann-Pick type C disease protein 1 (NPC1) and the Oxysterol Binding Protein Related Protein 1 (ORP1) are the subjects of the rest of this study. Sensing cholesterol on endosomes, transporting lipids away from this compartment and the effects these lipids play on cellular metabolism are considered. In the second study we characterize how the NPC1 protein affects lipid metabolism. We show that this cholesterol binding protein affects synthesis of triglycerides and that genetic polymorphisms or a genetic defect in the NPC1 gene affect triglyceride on the whole body level. These effects take place via regulation of carbon fluxes to different lipid classes in cells. In the third part we characterize the effects of another endosomal sterol binding protein, ORP1L on the function and motility of endosomes. Specifically we elucidate how a mutation in the ability of ORP1L to bind sterols affects its behavior in cells, and how a change in ORP1L levels in cells affects the localization, degradative capacity and motility of endosomes. In addition we show that ORP1L manipulations affect cholesterol balance also in macrophages, a cell type important for the development of atherosclerosis.