20 resultados para initial algebraic concepts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many economic events involve initial observations that substantially deviate from long-run steady state. Initial conditions of this type have been found to impact diversely on the power of univariate unit root tests, whereas the impact on multivariate tests is largely unknown. This paper investigates the impact of the initial condition on tests for cointegration rank. We compare the local power of the widely used likelihood ratio (LR) test with the local power of a test based on the eigenvalues of the companion matrix. We find that the power of the LR test is increasing in the magnitude of the initial condition, whereas the power of the other test is decreasing. The behaviour of the tests is investigated in an application to price convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecology and evolutionary biology is the study of life on this planet. One of the many methods applied to answering the great diversity of questions regarding the lives and characteristics of individual organisms, is the utilization of mathematical models. Such models are used in a wide variety of ways. Some help us to reason, functioning as aids to, or substitutes for, our own fallible logic, thus making argumentation and thinking clearer. Models which help our reasoning can lead to conceptual clarification; by expressing ideas in algebraic terms, the relationship between different concepts become clearer. Other mathematical models are used to better understand yet more complicated models, or to develop mathematical tools for their analysis. Though helping us to reason and being used as tools in the craftmanship of science, many models do not tell us much about the real biological phenomena we are, at least initially, interested in. The main reason for this is that any mathematical model is a simplification of the real world, reducing the complexity and variety of interactions and idiosynchracies of individual organisms. What such models can tell us, however, both is and has been very valuable throughout the history of ecology and evolution. Minimally, a model simplifying the complex world can tell us that in principle, the patterns produced in a model could also be produced in the real world. We can never know how different a simplified mathematical representation is from the real world, but the similarity models do strive for, gives us confidence that their results could apply. This thesis deals with a variety of different models, used for different purposes. One model deals with how one can measure and analyse invasions; the expanding phase of invasive species. Earlier analyses claims to have shown that such invasions can be a regulated phenomena, that higher invasion speeds at a given point in time will lead to a reduction in speed. Two simple mathematical models show that analysis on this particular measure of invasion speed need not be evidence of regulation. In the context of dispersal evolution, two models acting as proof-of-principle are presented. Parent-offspring conflict emerges when there are different evolutionary optima for adaptive behavior for parents and offspring. We show that the evolution of dispersal distances can entail such a conflict, and that under parental control of dispersal (as, for example, in higher plants) wider dispersal kernels are optimal. We also show that dispersal homeostasis can be optimal; in a setting where dispersal decisions (to leave or stay in a natal patch) are made, strategies that divide their seeds or eggs into fractions that disperse or not, as opposed to randomized for each seed, can prevail. We also present a model of the evolution of bet-hedging strategies; evolutionary adaptations that occur despite their fitness, on average, being lower than a competing strategy. Such strategies can win in the long run because they have a reduced variance in fitness coupled with a reduction in mean fitness, and fitness is of a multiplicative nature across generations, and therefore sensitive to variability. This model is used for conceptual clarification; by developing a population genetical model with uncertain fitness and expressing genotypic variance in fitness as a product between individual level variance and correlations between individuals of a genotype. We arrive at expressions that intuitively reflect two of the main categorizations of bet-hedging strategies; conservative vs diversifying and within- vs between-generation bet hedging. In addition, this model shows that these divisions in fact are false dichotomies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive framework has been developed for modelling young radiata pine survival, its growth and its size class distribution, from time of planting to age 5 or 6 years. The data and analysis refer to the Central North Island region of New Zealand. The survival function is derived from a Weibull probability density function, to reflect diminishing mortality with the passage of time in young stands. An anamorphic family of trends was used, as very little between-tree competition can be expected in young stands. An exponential height function was found to fit best the lower portion of its sigmoid form. The most appropriate basal area/ha exponential function included an allometric adjustment which resulted in compatible mean height and basal area/ha models. Each of these equations successfully represented the effects of several establishment practices by making coefficients linear functions of site factors, management activities and their interactions. Height and diameter distribution modelling techniques that ensured compatibility with stand values were employed to represent the effects of management practices on crop variation. Model parameters for this research were estimated using data from site preparation experiments in the region and were tested with some independent data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene mapping is a systematic search for genes that affect observable characteristics of an organism. In this thesis we offer computational tools to improve the efficiency of (disease) gene-mapping efforts. In the first part of the thesis we propose an efficient simulation procedure for generating realistic genetical data from isolated populations. Simulated data is useful for evaluating hypothesised gene-mapping study designs and computational analysis tools. As an example of such evaluation, we demonstrate how a population-based study design can be a powerful alternative to traditional family-based designs in association-based gene-mapping projects. In the second part of the thesis we consider a prioritisation of a (typically large) set of putative disease-associated genes acquired from an initial gene-mapping analysis. Prioritisation is necessary to be able to focus on the most promising candidates. We show how to harness the current biomedical knowledge for the prioritisation task by integrating various publicly available biological databases into a weighted biological graph. We then demonstrate how to find and evaluate connections between entities, such as genes and diseases, from this unified schema by graph mining techniques. Finally, in the last part of the thesis, we define the concept of reliable subgraph and the corresponding subgraph extraction problem. Reliable subgraphs concisely describe strong and independent connections between two given vertices in a random graph, and hence they are especially useful for visualising such connections. We propose novel algorithms for extracting reliable subgraphs from large random graphs. The efficiency and scalability of the proposed graph mining methods are backed by extensive experiments on real data. While our application focus is in genetics, the concepts and algorithms can be applied to other domains as well. We demonstrate this generality by considering coauthor graphs in addition to biological graphs in the experiments.