34 resultados para human urine analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug Analysis without Primary Reference Standards: Application of LC-TOFMS and LC-CLND to Biofluids and Seized Material Primary reference standards for new drugs, metabolites, designer drugs or rare substances may not be obtainable within a reasonable period of time or their availability may also be hindered by extensive administrative requirements. Standards are usually costly and may have a limited shelf life. Finally, many compounds are not available commercially and sometimes not at all. A new approach within forensic and clinical drug analysis involves substance identification based on accurate mass measurement by liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOFMS) and quantification by LC coupled with chemiluminescence nitrogen detection (LC-CLND) possessing equimolar response to nitrogen. Formula-based identification relies on the fact that the accurate mass of an ion from a chemical compound corresponds to the elemental composition of that compound. Single-calibrant nitrogen based quantification is feasible with a nitrogen-specific detector since approximately 90% of drugs contain nitrogen. A method was developed for toxicological drug screening in 1 ml urine samples by LC-TOFMS. A large target database of exact monoisotopic masses was constructed, representing the elemental formulae of reference drugs and their metabolites. Identification was based on matching the sample component s measured parameters with those in the database, including accurate mass and retention time, if available. In addition, an algorithm for isotopic pattern match (SigmaFit) was applied. Differences in ion abundance in urine extracts did not affect the mass accuracy or the SigmaFit values. For routine screening practice, a mass tolerance of 10 ppm and a SigmaFit tolerance of 0.03 were established. Seized street drug samples were analysed instantly by LC-TOFMS and LC-CLND, using a dilute and shoot approach. In the quantitative analysis of amphetamine, heroin and cocaine findings, the mean relative difference between the results of LC-CLND and the reference methods was only 11%. In blood specimens, liquid-liquid extraction recoveries for basic lipophilic drugs were first established and the validity of the generic extraction recovery-corrected single-calibrant LC-CLND was then verified with proficiency test samples. The mean accuracy was 24% and 17% for plasma and whole blood samples, respectively, all results falling within the confidence range of the reference concentrations. Further, metabolic ratios for the opioid drug tramadol were determined in a pharmacogenetic study setting. Extraction recovery estimation, based on model compounds with similar physicochemical characteristics, produced clinically feasible results without reference standards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nephrin is a transmembrane protein belonging to the immunoglobulin superfamily and is expressed primarily in the podocytes, which are highly differentiated epithelial cells needed for primary urine formation in the kidney. Mutations leading to nephrin loss abrogate podocyte morphology, and result in massive protein loss into urine and consequent early death in humans carrying specific mutations in this gene. The disease phenotype is closely replicated in respective mouse models. The purpose of this thesis was to generate novel inducible mouse-lines, which allow targeted gene deletion in a time and tissue-specific manner. A proof of principle model for succesful gene therapy for this disease was generated, which allowed podocyte specific transgene replacement to rescue gene deficient mice from perinatal lethality. Furthermore, the phenotypic consequences of nephrin restoration in the kidney and nephrin deficiency in the testis, brain and pancreas in rescued mice were investigated. A novel podocyte-specific construct was achieved by using standard cloning techniques to provide an inducible tool for in vitro and in vivo gene targeting. Using modified constructs and microinjection procedures two novel transgenic mouse-lines were generated. First, a mouse-line with doxycycline inducible expression of Cre recombinase that allows podocyte-specific gene deletion was generated. Second, a mouse-line with doxycycline inducible expression of rat nephrin, which allows podocyte-specific nephrin over-expression was made. Furthermore, it was possible to rescue nephrin deficient mice from perinatal lethality by cross-breeding them with a mouse-line with inducible rat nephrin expression that restored the missing endogenous nephrin only in the kidney after doxycycline treatment. The rescued mice were smaller, infertile, showed genital malformations and developed distinct histological abnormalities in the kidney with an altered molecular composition of the podocytes. Histological changes were also found in the testis, cerebellum and pancreas. The expression of another molecule with limited tissue expression, densin, was localized to the plasma membranes of Sertoli cells in the testis by immunofluorescence staining. Densin may be an essential adherens junction protein between Sertoli cells and developing germ cells and these junctions share similar protein assembly with kidney podocytes. This single, binary conditional construct serves as a cost- and time-efficient tool to increase the understanding of podocyte-specific key proteins in health and disease. The results verified a tightly controlled inducible podocyte-specific transgene expression in vitro and in vivo as expected. These novel mouse-lines with doxycycline inducible Cre recombinase and with rat nephrin expression will be useful for conditional gene targeting of essential podocyte proteins and to study in detail their functions in the adult mice. This is important for future diagnostic and pharmacologic development platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuronal ceroid lipofuscinoses (NCLs) are a group of mostly autosomal recessively inherited neurodegenerative disorders. The aim of this thesis was to characterize the molecular genetic bases of these, previously genetically undetermined, NCL forms. Congenital NCL is the most aggressive form of NCLs. Previously, a mutation in the cathepsin D (CTSD) gene was shown to cause congenital NCL in sheep. Based on the close resemblance of the phenotypes between congenital NCLs in sheep and human, CTSD was considered as a potential candidate gene in humans as well. When screened for mutations by sequencing, a homozygous nucleotide duplication creating a premature stop codon was identified in CTSD in one family with congenital NCL. While in vitro the overexpressed truncated mutant protein was stable although inactive, the absence of CTSD staining in brain tissue samples of patients indicated degradation of the mutant CTSD in vivo. A lack of CTSD staining was detected also in another, unrelated family with congenital NCL. These results imply that CTSD deficiency underlies congenital NCL. While initially Turkish vLINCL was considered a distinct genetic entity (CLN7), mutations in the CLN8 gene were later reported to account for the disease in a subset of Turkish patients with vLINCL. To further dissect the genetic basis of the disease, all known NCL genes were screened for homozygosity by haplotype analysis of microsatellite markers and/or sequenced in 13 mainly consanguineous, Turkish vLINCL families. Two novel, family-specific homozygous mutations were identified in the CLN6 gene. In the remaining families, all known NCL loci were excluded. To identify novel gene(s) underlying vLINCL, a genomewide single nucleotide polymorphism scan, homozygosity mapping, and positional candidate gene sequencing were performed in ten of these families. On chromosome 4q28.1-q28.2, a novel major facilitator superfamily domain containing 8 (MFSD8) gene with six family-specific homozygous mutations in vLINCL patients was identified. MFSD8 transcript was shown to be ubiquitously expressed with a complex pattern of alternative splicing. Our results suggest that MFSD8 is a novel lysosomal integral membrane protein which, as a member of the major facilitator superfamily, is predicted to function as a transporter. Identification of MFSD8 emphasizes the genetic heterogeneity of Turkish vLINCL. In families where no MFSD8 mutations were detected, additional NCL-causing genes remain to be identified. The identification of CTSD and MFSD8 increases the number of known human NCL-causing genes to eight, and is an important step towards the complete understanding of the genetic spectrum underlying NCLs. In addition, it is a starting point for dissecting the molecular mechanisms behind the associated NCLs and contributes to the challenging task of understanding the molecular pathology underlying the group of NCL disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the immune system is to protect an organism against pathogens while maintaining tolerance against self. T cells are an essential component of the immune system and they develop in the thymus. The AIRE (autoimmune regulator) gene product plays an important role in T cell development, as it promotes expression of peripheral tissue antigens in the thymus. Developing T cells, thymocytes, which recognize self-antigens with high affinity are deleted. However, this deletion process is not perfect and not all autoreactive T cells are destroyed. When the distinction between self and non-self fails, tolerance breaks and the immune system attacks the host s own tissues. This results in autoimmunity. Regulatory T cells contribute to the maintenance of self-tolerance. They can actively suppress the function of autoreactive cells. Several populations of cells with regulatory properties have been described, but the best characterized population is the natural regulatory T cells (Treg cells), which develop in the thymus and express the transcription factor FOXP3. The thymic development of Treg cells in humans is the subject of this thesis. Thymocytes at different developmental stages were analyzed using flow cytometry. The CD4-CD8- double-negative (DN) thymocytes are the earliest T cell precursors in the T cell lineage. My results show that the Treg cell marker FOXP3 is up-regulated already in a subset of these DN thymocytes. FOXP3+ cells were also found among the more mature CD4+CD8+ double-positive (DP) cells and among the CD4+ and CD8+ single-positive (SP) thymocytes. The different developmental stages of the FOXP3+ thymocytes were isolated and their gene expression examined by quantitative PCR. T cell receptor (TCR) repertoire analysis was used to compare these different thymocyte populations. My data show that in humans commitment to the Treg cell lineage is an early event and suggest that the development of Treg cells follows a linear developmental pathway, FOXP3+ DN precursors evolving through the DP stage to become mature CD4+ Treg cells. Most T cells have only one kind of TCR on their cell surface, but a small fraction of cells expresses two different TCRs. My results show that the expression of two different TCRs is enriched among Treg cells. Furthermore, both receptors were capable of transmitting signals when bound by a ligand. By extrapolating flow cytometric data, it was estimated that the majority of peripheral blood Treg cells are indeed dual-specific. The high frequency of dual-specific cells among human Treg cells suggests that dual-specificity has a role in directing these cells to the Treg cell lineage. It is known that both genetic predisposition and environmental factors influence the development of autoimmunity. It is also known that the dysfunction or absence of Treg cells leads to the development of autoimmune manifestations. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare monogenic autoimmune disease, caused by mutations in the AIRE gene. In the absence of AIRE gene product, deletion of self-specific T cells is presumably disturbed and autoreactive T cells escape to the periphery. I examined whether Treg cells are also affected in APECED. I found that the frequency of FOXP3+ Treg cells and the level of FOXP3 expression were significantly lower in APECED patients than in controls. Additionally, when studied in cell cultures, the suppressive capacity of the patients' Treg cells was impaired. Additionally, repertoire analysis showed that the TCR repertoire of Treg cells was altered. These results suggest that AIRE contributes to the development of Treg cells in humans and the selection of Treg cells is impaired in APECED patients. In conclusion, my thesis elucidates the developmental pathway of Treg cells in humans. The differentiation of Tregs begins early during thymic development and both the cells dual-specificity and AIRE probably affect the final commitment of Treg cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arabinoxylo-oligosaccharides (AXOS) can be prepared enzymatically from arabinoxylans (AX) and AXOS are known to possess prebiotic potential. Here the structural features of 10 cereal AX were examined. AX were hydrolysed by Shearzyme® to prepare AXOS, and their structures were fully analysed. The prebiotic potential of the purified AXOS was studied in the fermentation experiments with bifidobacteria and faecal microbiota. In AX extracted from flours and bran, high amounts of a-L-Araf units are attached to the b-D-Xylp main chain, whereas moderate or low degree of substitution was found from husks, cob and straw. Nuclear magnetic resonance (NMR) spectroscopy showed that flour and bran AX contain high amounts of a-L-Araf units bound to the O-3 of b-D-Xylp residues and doubly substituted b-D-Xylp units with a-L-Araf substituents at O-2 and O-3. Barley husk and corn cob AX contain high amounts of b-D-Xylp(1→2)-a-L-Araf(1→3) side chains, which can also be found in AX from oat spelts and rice husks, and in lesser amounts in wheat straw AX. Rye and wheat flour AX and oat spelt AX were hydrolysed by Shearzyme® (with Aspergillus aculeatus GH10 endo-1,4-b-D-xylanase as the main enzyme) for the production of AXOS on a milligram scale. The AXOS were purified and their structures fully analysed, using mass spectrometry (MS) and 1D and 2D NMR spectroscopy. Monosubstituted xylobiose and xylotriose with a-L-Araf attached to the O-3 or O-2 of the nonreducing end b-D-Xylp unit and disubstituted AXOS with two a-L-Araf units at the nonreducing end b-D-Xylp unit of xylobiose or xylotriose were produced. Xylobiose with b-D-Xylp(1→2)-a-L-Araf(1→3) side chain was also purified. These AXOS were used as standards in further identification and quantification of corresponding AXOS from the hydrolysates in high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis. The prebiotic potential of AXOS was tested in in vitro fermentation experiments. Bifidobacterium adolescentis ATCC 15703 and B. longum ATCC 15707 utilized AXOS from the AX hydrolysates. Both species released L-arabinose from AXOS, but B. adolescentis consumed the XOS formed, whereas B. longum fermented the L-arabinose released. The third species tested, B. breve ATCC 15700, grew poorly on these substrates. When cultivated on pure AXOS, the bifidobacterial mixture utilized pure singly substituted AXOS almost completely, but no growth was detected with pure doubly substituted AXOS as substrates. However, doubly substituted AXOS were utilized from the mixture of xylose, XOS and AXOS. Faecal microbiota utilized both pure singly and doubly substituted AXOS. Thus, a mixture of singly and doubly substituted AXOS could function as a suitable, slowly fermenting prebiotic substance. This thesis contributes to the structural information on cereal AX and preparation of mono and doubly substituted AXOS from AX. Understanding the utilization strategies is fundamental in evaluating the prebiotic potential of AXOS. Further research is still required before AXOS can be used in applications for human consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miniaturized mass spectrometric ionization techniques for environmental analysis and bioanalysis Novel miniaturized mass spectrometric ionization techniques based on atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were studied and evaluated in the analysis of environmental samples and biosamples. The three analytical systems investigated here were gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry (GC-µAPCI-MS) and gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry (GC-µAPPI-MS), where sample pretreatment and chromatographic separation precede ionization, and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS), where the samples are analyzed either as such or after minimal pretreatment. The gas chromatography-microchip atmospheric pressure ionization-mass spectrometry (GC-µAPI-MS) instrumentations were used in the analysis of polychlorinated biphenyls (PCBs) in negative ion mode and 2-quinolinone-derived selective androgen receptor modulators (SARMs) in positive ion mode. The analytical characteristics (i.e., limits of detection, linear ranges, and repeatabilities) of the methods were evaluated with PCB standards and SARMs in urine. All methods showed good analytical characteristics and potential for quantitative environmental analysis or bioanalysis. Desorption and ionization mechanisms in DAPPI were studied. Desorption was found to be a thermal process, with the efficiency strongly depending on thermal conductivity of the sampling surface. Probably the size and polarity of the analyte also play a role. In positive ion mode, the ionization is dependent on the ionization energy and proton affinity of the analyte and the spray solvent, while in negative ion mode the ionization mechanism is determined by the electron affinity and gas-phase acidity of the analyte and the spray solvent. DAPPI-MS was tested in the fast screening analysis of environmental, food, and forensic samples, and the results demonstrated the feasibility of DAPPI-MS for rapid screening analysis of authentic samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins are complex biomacromolecules playing fundamental roles in the physiological processes of all living organisms. They function as structural units, enzymes, transporters, process regulators, and signal transducers. Defects in protein functions often derive from genetic mutations altering the protein structure, and impairment of essential protein functions manifests itself as pathological conditions. Proteins operate through interactions, and all protein functions depend on protein structure. In order to understand biological mechanisms at the molecular level, one has to know the structures of the proteins involved. This thesis covers structural and functional characterization of human filamins. Filamins are actin-binding and -bundling proteins that have numerous interaction partners. In addition to their actin-organizing functions, filamins are also known to have roles in cell adhesion and locomotion, and to participate in the logistics of cell membrane receptors, and in the coordination of intracellular signaling pathways. Filamin mutations in humans induce severe pathological conditions affecting the brain, bones, limbs, and the cardiovascular system. Filamins are large modular proteins composed of an N-terminal actin-binding domain and 24 consecutive immunoglobulin-like domains (IgFLNs). Nuclear magnetic resonance (NMR) spectroscopy is a versatile method of gaining insight into protein structure, dynamics and interactions. NMR spectroscopy was employed in this thesis to study the atomic structure and interaction mechanisms of C-terminal IgFLNs, which are known to house the majority of the filamin interaction sites. The structures of IgFLN single-domains 17 and 23 and IgFLN domain pairs 16-17 and 18-19 were determined using NMR spectroscopy. The structures of domain pairs 16 17 and 18 19 both revealed novel domain domain interaction modes of IgFLNs. NMR titrations were employed to characterize the interactions of filamins with glycoprotein Ibα, FilGAP, integrin β7 and dopamine receptors. Domain packing of IgFLN domain sextet 16 21 was further characterized using residual dipolar couplings and NMR relaxation analysis. This thesis demonstrates the versatility and potential of NMR spectroscopy in structural and functional studies of multi-domain proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Historical sediment nutrient concentrations and heavy-metal distributions were studied in five embayments in the Gulf of Finland and an adjacent lake. The main objective of the study was to examine the response of these water bodies to temporal changes in human activities. Sediment cores were collected from the sites and dated using 210Pb and 137Cs. The cores were analyzed for total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP), biogenic silica (BSi), loss on ignition (LOI), grain size, Cu, Zn, Al, Fe, Mn, K, Ca, Mg and Na. Principal component analysis (PCA) was used to summarize the trends in the geochemical variables and to compare trends between the different sites. The links between the catchment land use and sediment geochemical data were studied using a multivariate technique of redundancy analysis (RDA). Human activities produce marked geochemical variations in coastal sediments. These variations and signals are often challenging to interpret due to various sedimentological and post-depositional factors affecting the sediment profiles. In general, the sites studied here show significant upcore increases in sedimentation rates, TP and TN concentrations. Also Cu, which is considered to be a good indicator of anthropogenic influence, showed clear increases from 1850 towards the top part of the cores. Based on the RDA-analysis, in the least disturbed embayments with high forest cover, the sediments are dominated by lithogenic indicators Fe, K, Al and Mg. In embayments close to urban settlement, the sediments have high Cu concentrations and a high sediment Fe/Mn ratio. This study suggests that sediment accumulation rates vary significantly from site to site and that the overall sedimentation can be linked to the geomorphology and basin bathymetry, which appear to be the major factors governing sedimentation rates; i.e. a high sediment accumulation rate is not characteristic either to urban or to rural sites. The geochemical trends are strongly site specific and depend on the local geochemical background, basin characteristics and anthropogenic metal and nutrient loading. Of the studied geochemical indicators, OP shows the least monotonic trends in all studied sites. When compared to other available data, OP seems to be the most reliable geochemical indicator describing the trophic development of the study sites, whereas Cu and Zn appear to be good indicators for anthropogenic influence. As sedimentation environments, estuarine and marine sites are more complex than lacustrine basins with multiple sources of sediment input and more energetic conditions in the former. The crucial differences between lacustrine and estuarine/coastal sedimentation environments are mostly related to Fe. P sedimentation is largely governed by Fe redox-reactions in estuarine environments. In freshwaters, presence of Fe is clearly linked to the sedimentation of other lithogenic metals, and therefore P sedimentation and preservation has a more direct linkage to organic matter sedimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arctic peoples are currently faced with the challenge of adapting to climate change. Adaptive strategies have been central for the survival of the Northern communities also in the past. This doctoral dissertation is a comparative study of how two Northern societies, the Faroe Islands and Greenland, have responded to challenges caused by the interplay of environmental, political and socio-economic changes. Its main objective is to describe the characteristics of respective adaptive strategies developed in the two societies and to show which connections exist between adaptation and the development of the settlement patterns. This study is based on document analysis, supported by an analysis of demographic and economic statistics. For the field work, the empirical method of landscape-reading was applied. A narrative approach was used to explain interrelations between adaptive strategies and societal developments in the Faroe Islands and Greenland. Maps illustrating development and changes in settlement patterns in different time periods are central for this study because they illustrate the impacts of adaptation on settlement development. The results of this dissertation show that people in the Faroe Islands and Greenland have consciously developed their settlements and used this as an adaptive strategy: different types of settlements were established depending on which kind of resource base was available. Strong dependency on a single resource is likely to increase the probability that settlement development was impacted by it. The interrelation of natural resource use and settlement pattern development has weakened in the Faroe Islands and Greenland from the mid-1900s. Since then, the importance of the government settlement policies has become pronounced and the existing settlement pattern, including settlements without prospects for genuine economic viability, has been preserved. Currently, the Northern communities are increasingly dependent on worldwide developments. In the light of this study, the communities can respond to challenges of globalization and climate change and develop new kind of adaptive strategies, such as diversification of their economic activities. This dissertation shows that it is important to extend studies about community adaptation in the High North to consider the overall development of the Northern settlement patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoimmune diseases are a major health problem. Usually autoimmune disorders are multifactorial and their pathogenesis involves a combination of predisposing variations in the genome and other factors such as environmental triggers. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare, recessively inherited, autoimmune disease caused by mutations in a single gene. Patients with APECED suffer from several organ-specific autoimmune disorders, often affecting the endocrine glands. The defective gene, AIRE, codes for a transcriptional regulator. The AIRE (autoimmune regulator) protein controls the expression of hundreds of genes, representing a substantial subset of tissue-specific antigens which are presented to developing T cells in the thymus and has proven to be a key molecule in the establishment of immunological tolerance. However, the molecular mechanisms by which AIRE mediates its functions are still largely obscure. The aim of this thesis has been to elucidate the functions of AIRE by studying the molecular interactions it is involved in by utilizing different cultured cell models. A potential molecular mechanism for exceptional, dominant, inheritance of APECED in one family, carrying a glycine 228 to tryptophan (G228W) mutation, was described in this thesis. It was shown that the AIRE polypeptide with G228W mutation has a dominant negative effect by binding the wild type AIRE and inhibiting its transactivation capacity in vitro. The data also emphasizes the importance of homomultimerization of AIRE in vivo. Furthermore, two novel protein families interacting with AIRE were identified. The importin alpha molecules regulate the nuclear import of AIRE by binding to the nuclear localization signal of AIRE, delineated as a classical monopartite signal sequence. The interaction of AIRE with PIAS E3 SUMO ligases, indicates a link to the sumoylation pathway, which plays an important role in the regulation of nuclear architecture. It was shown that AIRE is not a target for SUMO modification but enhances the localization of SUMO1 and PIAS1 proteins to nuclear bodies. Additional support for the suggestion that AIRE would preferably up-regulate genes with tissue-specific expression pattern and down-regulate housekeeping genes was obtained from transactivation studies performed with two models: human insulin and cystatin B promoters. Furthermore, AIRE and PIAS activate the insulin promoter concurrently in a transactivation assay, indicating that their interaction is biologically relevant. Identification of novel interaction partners for AIRE provides us information about the molecular pathways involved in the establishment of immunological tolerance and deepens our understanding of the role played by AIRE not only in APECED but possibly also in several other autoimmune diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to several environmental problems such as aquatic and terrestrial eutrophication. Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. The multiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using substance flow analysis (SFA) in the following four subsystems: I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical development of the N and P flows was investigated in the energy system (III) and the municipal waste system (IV). The main research sources were official statistics, literature, monitoring data, and expert knowledge. The aim was to identify and quantify the main flows of N and P in Finland in the four subsystems studied. Furthermore, the aim was to elucidate whether the nutrient systems are cyclic or linear, and to identify how these systems could be more efficient in the use and cycling of N and P. A final aim was to discuss how this type of an analysis can be used to support decision-making on environmental problems and solutions. Of the four subsystems, the food production and consumption system and the energy system created the largest N flows in Finland. For the creation of P flows, the food production and consumption system (Paper II) was clearly the largest, followed by the forest industry and use of wood fuels and the energy system. The contribution of Finland to N and P flows on a global scale is low, but when compared on a per capita basis, we are one of the largest producers of these flows, with relatively high energy and meat consumption being the main reasons. Analysis revealed the openness of all four systems. The openness is due to the high degree of internationality of the Finnish markets, the large-scale use of synthetic fertilizers and energy resources and the low recycling rate of many waste fractions. Reduction in the use of fuels and synthetic fertilizers, reorganization of the structure of energy production, reduced human intake of nutrients and technological development are crucial in diminishing the N and P flows. To enhance nutrient recycling and replace inorganic fertilizers, recycling of such wastes as wood ash and sludge could be promoted. SFA is not usually sufficiently detailed to allow specific recommendations for decision-making to be made, but it does yield useful information about the relative magnitude of the flows and may reveal unexpected losses. Sustainable development is a widely accepted target for all human action. SFA is one method that can help to analyse how effective different efforts are in leading to a more sustainable society. SFA's strength is that it allows a holistic picture of different natural and societal systems to be drawn. Furthermore, when the environmental impact of a certain flow is known, the method can be used to prioritize environmental policy efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.