30 resultados para grass distribution
Resumo:
Climate change contributes directly or indirectly to changes in species distributions, and there is very high confidence that recent climate warming is already affecting ecosystems. The Arctic has already experienced the greatest regional warming in recent decades, and the trend is continuing. However, studies on the northern ecosystems are scarce compared to more southerly regions. Better understanding of the past and present environmental change is needed to be able to forecast the future. Multivariate methods were used to explore the distributional patterns of chironomids in 50 shallow (≤ 10m) lakes in relation to 24 variables determined in northern Fennoscandia at the ecotonal area from the boreal forest in the south to the orohemiarctic zone in the north. Highest taxon richness was noted at middle elevations around 400 m a.s.l. Significantly lower values were observed from cold lakes situated in the tundra zone. Lake water alkalinity had the strongest positive correlation with the taxon richness. Many taxa had preference for lakes either on tundra area or forested area. The variation in the chironomid abundance data was best correlated with sediment organic content (LOI), lake water total organic carbon content, pH and air temperature, with LOI being the strongest variable. Three major lake groups were separated on the basis of their chironomid assemblages: (i) small and shallow organic-rich lakes, (ii) large and base-rich lakes, and (iii) cold and clear oligotrophic tundra lakes. Environmental variables best discriminating the lake groups were LOI, taxon richness, and Mg. When repeated, this kind of an approach could be useful and efficient in monitoring the effects of global change on species ranges. Many species of fast spreading insects, including chironomids, show a remarkable ability to track environmental changes. Based on this ability, past environmental conditions have been reconstructed using their chitinous remains in the lake sediment profiles. In order to study the Holocene environmental history of subarctic aquatic systems, and quantitatively reconstruct the past temperatures at or near the treeline, long sediment cores covering the last 10000 years (the Holocene) were collected from three lakes. Lower temperature values than expected based on the presence of pine in the catchment during the mid-Holocene were reconstructed from a lake with great water volume and depth. The lake provided thermal refuge for profundal, cold adapted taxa during the warm period. In a shallow lake, the decrease in the reconstructed temperatures during the late Holocene may reflect the indirect response of the midges to climate change through, e.g., pH change. The results from three lakes indicated that the response of chironomids to climate have been more or less indirect. However, concurrent shifts in assemblages of chironomids and vegetation in two lakes during the Holocene time period indicated that the midges together with the terrestrial vegetation had responded to the same ultimate cause, which most likely was the Holocene climate change. This was also supported by the similarity in the long-term trends in faunal succession for the chironomid assemblages in several lakes in the area. In northern Finnish Lapland the distribution of chironomids were significantly correlated with physical and limnological factors that are most likely to change as a result of future climate change. The indirect and individualistic response of aquatic systems, as reconstructed using the chironomid assemblages, to the climate change in the past suggests that in the future, the lake ecosystems in the north do not respond in one predictable way to the global climate change. Lakes in the north may respond to global climate change in various ways that are dependent on the initial characters of the catchment area and the lake.
Resumo:
In order to predict the current state and future development of Earth s climate, detailed information on atmospheric aerosols and aerosol-cloud-interactions is required. Furthermore, these interactions need to be expressed in such a way that they can be represented in large-scale climate models. The largest uncertainties in the estimate of radiative forcing on the present day climate are related to the direct and indirect effects of aerosol. In this work aerosol properties were studied at Pallas and Utö in Finland, and at Mount Waliguan in Western China. Approximately two years of data from each site were analyzed. In addition to this, data from two intensive measurement campaigns at Pallas were used. The measurements at Mount Waliguan were the first long term aerosol particle number concentration and size distribution measurements conducted in this region. They revealed that the number concentration of aerosol particles at Mount Waliguan were much higher than those measured at similar altitudes in other parts of the world. The particles were concentrated in the Aitken size range indicating that they were produced within a couple of days prior to reaching the site, rather than being transported over thousands of kilometers. Aerosol partitioning between cloud droplets and cloud interstitial particles was studied at Pallas during the two measurement campaigns, First Pallas Cloud Experiment (First PaCE) and Second Pallas Cloud Experiment (Second PaCE). The method of using two differential mobility particle sizers (DMPS) to calculate the number concentration of activated particles was found to agree well with direct measurements of cloud droplet. Several parameters important in cloud droplet activation were found to depend strongly on the air mass history. The effects of these parameters partially cancelled out each other. Aerosol number-to-volume concentration ratio was studied at all three sites using data sets with long time-series. The ratio was found to vary more than in earlier studies, but less than either aerosol particle number concentration or volume concentration alone. Both air mass dependency and seasonal pattern were found at Pallas and Utö, but only seasonal pattern at Mount Waliguan. The number-to-volume concentration ratio was found to follow the seasonal temperature pattern well at all three sites. A new parameterization for partitioning between cloud droplets and cloud interstitial particles was developed. The parameterization uses aerosol particle number-to-volume concentration ratio and aerosol particle volume concentration as the only information on the aerosol number and size distribution. The new parameterization is computationally more efficient than the more detailed parameterizations currently in use, but the accuracy of the new parameterization was slightly lower. The new parameterization was also compared to directly observed cloud droplet number concentration data, and a good agreement was found.
Resumo:
Transport plays an important role in the distribution of long-lived gases such as ozone and water vapour in the atmosphere. Understanding of observed variability in these gases as well as prediction of the future changes depends therefore on our knowledge of the relevant atmospheric dynamics. This dissertation studies certain dynamical processes in the stratosphere and upper troposphere which influence the distribution of ozone and water vapour in the atmosphere. The planetary waves that originate in the troposphere drive the stratospheric circulation. They influence both the meridional transport of substances as well as parameters of the polar vortices. In turn, temperatures inside the polar vortices influence abundance of the Polar Stratospheric Clouds (PSC) and therefore the chemical ozone destruction. Wave forcing of the stratospheric circulation is not uniform during winter. The November-December averaged stratospheric eddy heat flux shows a significant anticorrelation with the January-February averaged eddy heat flux in the midlatitude stratosphere and troposphere. These intraseasonal variations are attributable to the internal stratospheric vacillations. In the period 1979-2002, the wave forcing exhibited a negative trend which was confined to the second half of winter only. In the period 1958-2002, area, strength and longevity of the Arctic polar vortices do not exhibit significant long-term changes while the area with temperatures lower than the threshold temperature for PSC formation shows statistically significant increase. However, the Arctic vortex parameters show significant decadal changes which are mirrored in the ozone variability. Monthly ozone tendencies in the Northern Hemisphere show significant correlations (|r|=0.7) with proxies of the stratospheric circulation. In the Antarctic, the springtime vortex in the lower stratosphere shows statistically significant trends in temperature, longevity and strength (but not in area) in the period 1979-2001. Analysis of the ozone and water vapour vertical distributions in the Arctic UTLS shows that layering below and above the tropopause is often associated with poleward Rossby wave-breaking. These observations together with calculations of cross-tropopause fluxes emphasize the importance of poleward Rossby wave breaking for the stratosphere-troposphere exchange in the Arctic.
Resumo:
We present a measurement of the transverse momentum with respect to the jet axis (kt) of particles in jets produced in pp̅ collisions at √s=1.96 TeV. Results are obtained for charged particles in a cone of 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c2. The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics.
Resumo:
We present a measurement of the transverse momentum with respect to the jet axis ($k_{T}$) of particles in jets produced in $p\bar p$ collisions at $\sqrt{s}=1.96$ TeV. Results are obtained for charged particles within a cone of opening angle 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c$^{2}$. The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics.
Resumo:
The aim of the current study is to examine the influence of the channel external environment on power, and the effect of power on the distribution network structure within the People’s Republic of China. Throughout the study a dual research process was applied. The theory was constructed by elaborating the main theoretical premises of the study, the channel power theories, the political economy framework and the distribution network structure, but these marketing channel concepts were expanded with other perspectives from other disciplines. The main method applied was a survey conducted among 164 Chinese retailers, complemented by interviews, photographs, observations and census data from the field. This multi-method approach enabled not only to validate and triangulate the quantitative results, but to uncover serendipitous findings as well. The theoretical contribution of the current study to the theory of marketing channels power is the different view it takes on power. First, earlier power studies have taken the producer perspective, whereas the current study also includes a distributor perspective to the discussion. Second, many power studies have dealt with strongly dependent relationships, whereas the current study examines loosely dependent relationships. Power is dependent on unequal distribution of resources rather than based on high dependency. The benefit of this view is in realising that power resources and power strategies are separate concepts. The empirical material of the current study confirmed that at least some resources were significantly related to power strategies. The study showed that the dimension resources composed of technology, know-how and knowledge, managerial freedom and reputation was significantly related to non-coercive power. Third, the notion of different outcomes of power is a contribution of this study to the channels power theory even though not confirmed by the empirical results. Fourth, it was proposed that channel external environment other than the resources would also contribute to the channel power. These propositions were partially supported thus providing only partial contribution to the channel power theory. Finally, power was equally distributed among the different types of actors. The findings from the qualitative data suggest that different types of retailers can be classified according to the meaning the actors put into their business. Some are more business oriented, for others retailing is the only way to earn a living. The findings also suggest that in some actors both retailing and wholesaling functions emerge, and this has implications for the marketing channels structure.
Resumo:
Kasvit ovat kautta aikojen levinneet uusille elinpaikoille. Kasvin asettumista uuteen paikkaan voidaan tarkastella prosessina, jossa on erilaisia vaiheita ja eri vaiheissa eri tekijät ovat tärkeitä. Ilmasto ja erityisesti lämpötila vaikuttavat kasvien levinneisyyteen ja leviämiseen uusille paikoille ja siksi ilmaston lämpenemisen ennustetaan siirtävän kasvien levinneisyysalueita kohti pohjoista. On mahdollista, että Suomeenkin leviäisi etelämmästä muiden kasvien ohella haitallisia rikkakasvilajeja, kuten esimerkiksi viherrevonhäntä (Amaranthus retroflexus L.) ja kananhirssi (Echinochloa crus-galli L. Beauv.). Tämän tutkimuksen tarkoituksena oli selvittää, selviävätkö viherrevonhäntä ja kananhirssi Suomessa pelto-olosuhteissa ja pohtia niiden vakiintumisen ja leviämisen mahdollisuuksia. Toinen tarkoitus oli selvittää ilmaston lämpenemisen vaikutusta näiden rikkakasvien kasvuun. Tutkimus suoritettiin kenttä- sekä kasvihuonekokeena. Viherrevonhäntä kasvoi pellolla hyvin huolimatta myöhäisestä itämisestä, mutta kananhirssi iti ja kasvoi pellolla huonosti. Kasvihuoneessa molemmat kasvoivat hyvin. Kilpailu vähensi viherrevonhännän ja kananhirssin vegetatiivista kasvua vain kasvihuoneessa, mutta siementuottoon kilpailu vaikutti sekä kasvihuoneessa että pellolla. Kasvihuoneessa korkeampi lämpötila ei vaikuttanut viherrevonhännän tai kananhirssin vegetatiiviseen kasvuun, mutta viherrevonhännän siementuotto parani lämpimämmässä. Lämpötilalla ei ollut vaikutusta kananhirssin siementuotantoon. Tutkimuksen tuloksista voidaan päätellä, että viherrevonhäntä voi hyvinkin kasvaa Suomessa jo nykyisissä lämpötiloissa, mutta siementuotto ei välttämättä olisi varmaa. Viherrevonhäntä voisi näin ollen hyötyä tulevaisuuden pidemmästä kasvukaudesta. Kananhirssin osalta tulokset olivat ristiriitaiset ja ilmaston lämpenemisen vaikutuksia kananhirssiin on tämän tutkimuksen perusteella hankala arvioida.
Resumo:
The blood-brain barrier (BBB) is a unique barrier that strictly regulates the entry of endogenous substrates and xenobiotics into the brain. This is due to its tight junctions and the array of transporters and metabolic enzymes that are expressed. The determination of brain concentrations in vivo is difficult, laborious and expensive which means that there is interest in developing predictive tools of brain distribution. Predicting brain concentrations is important even in early drug development to ensure efficacy of central nervous system (CNS) targeted drugs and safety of non-CNS drugs. The literature review covers the most common current in vitro, in vivo and in silico methods of studying transport into the brain, concentrating on transporter effects. The consequences of efflux mediated by p-glycoprotein, the most widely characterized transporter expressed at the BBB, is also discussed. The aim of the experimental study was to build a pharmacokinetic (PK) model to describe p-glycoprotein substrate drug concentrations in the brain using commonly measured in vivo parameters of brain distribution. The possibility of replacing in vivo parameter values with their in vitro counterparts was also studied. All data for the study was taken from the literature. A simple 2-compartment PK model was built using the Stella™ software. Brain concentrations of morphine, loperamide and quinidine were simulated and compared with published studies. Correlation of in vitro measured efflux ratio (ER) from different studies was evaluated in addition to studying correlation between in vitro and in vivo measured ER. A Stella™ model was also constructed to simulate an in vitro transcellular monolayer experiment, to study the sensitivity of measured ER to changes in passive permeability and Michaelis-Menten kinetic parameter values. Interspecies differences in rats and mice were investigated with regards to brain permeability and drug binding in brain tissue. Although the PK brain model was able to capture the concentration-time profiles for all 3 compounds in both brain and plasma and performed fairly well for morphine, for quinidine it underestimated and for loperamide it overestimated brain concentrations. Because the ratio of concentrations in brain and blood is dependent on the ER, it is suggested that the variable values cited for this parameter and its inaccuracy could be one explanation for the failure of predictions. Validation of the model with more compounds is needed to draw further conclusions. In vitro ER showed variable correlation between studies, indicating variability due to experimental factors such as test concentration, but overall differences were small. Good correlation between in vitro and in vivo ER at low concentrations supports the possibility of using of in vitro ER in the PK model. The in vitro simulation illustrated that in the simulation setting, efflux is significant only with low passive permeability, which highlights the fact that the cell model used to measure ER must have low enough paracellular permeability to correctly mimic the in vivo situation.