35 resultados para graph matching algorithms


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix decompositions, where a given matrix is represented as a product of two other matrices, are regularly used in data mining. Most matrix decompositions have their roots in linear algebra, but the needs of data mining are not always those of linear algebra. In data mining one needs to have results that are interpretable -- and what is considered interpretable in data mining can be very different to what is considered interpretable in linear algebra. --- The purpose of this thesis is to study matrix decompositions that directly address the issue of interpretability. An example is a decomposition of binary matrices where the factor matrices are assumed to be binary and the matrix multiplication is Boolean. The restriction to binary factor matrices increases interpretability -- factor matrices are of the same type as the original matrix -- and allows the use of Boolean matrix multiplication, which is often more intuitive than normal matrix multiplication with binary matrices. Also several other decomposition methods are described, and the computational complexity of computing them is studied together with the hardness of approximating the related optimization problems. Based on these studies, algorithms for constructing the decompositions are proposed. Constructing the decompositions turns out to be computationally hard, and the proposed algorithms are mostly based on various heuristics. Nevertheless, the algorithms are shown to be capable of finding good results in empirical experiments conducted with both synthetic and real-world data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual task in music information retrieval (MIR) is to find occurrences of a monophonic query pattern within a music database, which can contain both monophonic and polyphonic content. The so-called query-by-humming systems are a famous instance of content-based MIR. In such a system, the user's hummed query is converted into symbolic form to perform search operations in a similarly encoded database. The symbolic representation (e.g., textual, MIDI or vector data) is typically a quantized and simplified version of the sampled audio data, yielding to faster search algorithms and space requirements that can be met in real-life situations. In this thesis, we investigate geometric approaches to MIR. We first study some musicological properties often needed in MIR algorithms, and then give a literature review on traditional (e.g., string-matching-based) MIR algorithms and novel techniques based on geometry. We also introduce some concepts from digital image processing, namely the mathematical morphology, which we will use to develop and implement four algorithms for geometric music retrieval. The symbolic representation in the case of our algorithms is a binary 2-D image. We use various morphological pre- and post-processing operations on the query and the database images to perform template matching / pattern recognition for the images. The algorithms are basically extensions to classic image correlation and hit-or-miss transformation techniques used widely in template matching applications. They aim to be a future extension to the retrieval engine of C-BRAHMS, which is a research project of the Department of Computer Science at University of Helsinki.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse large B-cell lymphoma (DLBCL) is the most common of the non-Hodgkin lymphomas. As DLBCL is characterized by heterogeneous clinical and biological features, its prognosis varies. To date, the International Prognostic Index has been the strongest predictor of outcome for DLBCL patients. However, no biological characters of the disease are taken into account. Gene expression profiling studies have identified two major cell-of-origin phenotypes in DLBCL with different prognoses, the favourable germinal centre B-cell-like (GCB) and the unfavourable activated B-cell-like (ABC) phenotypes. However, results of the prognostic impact of the immunohistochemically defined GCB and non-GCB distinction are controversial. Furthermore, since the addition of the CD20 antibody rituximab to chemotherapy has been established as the standard treatment of DLBCL, all molecular markers need to be evaluated in the post-rituximab era. In this study, we aimed to evaluate the predictive value of immunohistochemically defined cell-of-origin classification in DLBCL patients. The GCB and non-GCB phenotypes were defined according to the Hans algorithm (CD10, BCL6 and MUM1/IRF4) among 90 immunochemotherapy- and 104 chemotherapy-treated DLBCL patients. In the chemotherapy group, we observed a significant difference in survival between GCB and non-GCB patients, with a good and a poor prognosis, respectively. However, in the rituximab group, no prognostic value of the GCB phenotype was observed. Likewise, among 29 high-risk de novo DLBCL patients receiving high-dose chemotherapy and autologous stem cell transplantation, the survival of non-GCB patients was improved, but no difference in outcome was seen between GCB and non-GCB subgroups. Since the results suggested that the Hans algorithm was not applicable in immunochemotherapy-treated DLBCL patients, we aimed to further focus on algorithms based on ABC markers. We examined the modified activated B-cell-like algorithm based (MUM1/IRF4 and FOXP1), as well as a previously reported Muris algorithm (BCL2, CD10 and MUM1/IRF4) among 88 DLBCL patients uniformly treated with immunochemotherapy. Both algorithms distinguished the unfavourable ABC-like subgroup with a significantly inferior failure-free survival relative to the GCB-like DLBCL patients. Similarly, the results of the individual predictive molecular markers transcription factor FOXP1 and anti-apoptotic protein BCL2 have been inconsistent and should be assessed in immunochemotherapy-treated DLBCL patients. The markers were evaluated in a cohort of 117 patients treated with rituximab and chemotherapy. FOXP1 expression could not distinguish between patients, with favourable and those with poor outcomes. In contrast, BCL2-negative DLBCL patients had significantly superior survival relative to BCL2-positive patients. Our results indicate that the immunohistochemically defined cell-of-origin classification in DLBCL has a prognostic impact in the immunochemotherapy era, when the identifying algorithms are based on ABC-associated markers. We also propose that BCL2 negativity is predictive of a favourable outcome. Further investigational efforts are, however, warranted to identify the molecular features of DLBCL that could enable individualized cancer therapy in routine patient care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The core aim of machine learning is to make a computer program learn from the experience. Learning from data is usually defined as a task of learning regularities or patterns in data in order to extract useful information, or to learn the underlying concept. An important sub-field of machine learning is called multi-view learning where the task is to learn from multiple data sets or views describing the same underlying concept. A typical example of such scenario would be to study a biological concept using several biological measurements like gene expression, protein expression and metabolic profiles, or to classify web pages based on their content and the contents of their hyperlinks. In this thesis, novel problem formulations and methods for multi-view learning are presented. The contributions include a linear data fusion approach during exploratory data analysis, a new measure to evaluate different kinds of representations for textual data, and an extension of multi-view learning for novel scenarios where the correspondence of samples in the different views or data sets is not known in advance. In order to infer the one-to-one correspondence of samples between two views, a novel concept of multi-view matching is proposed. The matching algorithm is completely data-driven and is demonstrated in several applications such as matching of metabolites between humans and mice, and matching of sentences between documents in two languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis analyzes how matching takes place at the Finnish labor market from three different angles. The Finnish labor market has undergone severe structural changes following the economic crisis in the early 1990s. The labor market has had problems adjusting from these changes and hence a high and persistent unemployment has followed. In this thesis I analyze if matching problems, and in particular if changes in matching, can explain some of this persistence. The thesis consists of three essays. In the first essay Finnish Evidence of Changes in the Labor Market Matching Process the matching process at the Finnish labor market is analyzed. The key finding is that the matching process has changed thoroughly between the booming 1980s and the post-crisis period. The importance of the number of unemployed, and in particular long-term unemployed, for the matching process has vanished. More unemployed do not increase matching as theory predicts but rather the opposite. In the second essay, The Aggregate Matching Function and Directed Search -Finnish Evidence, stock-flow matching as a potential micro foundation of the aggregate matching function is studied. In the essay I show that newly unemployed match mainly with the stock of vacancies while longer term unemployed match with the inflow of vacancies. When aggregating I still find evidence of the traditional aggregate matching function. This could explain the huge support the aggregate matching function has received despite its odd randomness assumption. The third essay, How do Registered Job Seekers really match? -Finnish occupational level Evidence, studies matching for nine occupational groups and finds that very different matching problems exist for different occupations. In this essay also misspecification stemming from non-corresponding variables is dealt with through the introduction of a completely new set of variables. The new outflow measure used is vacancies filled with registered job seekers and it is matched by the supply side measure registered job seekers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating–dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating–dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs – these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating–dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0 for nonnegative matrices A and C. We present a local algorithm (constant-time distributed algorithm) for approximating max-min LPs. The approximation ratio of our algorithm is the best possible for any local algorithm; there is a matching unconditional lower bound.