59 resultados para fire tolerant species
Resumo:
The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.
Resumo:
This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.
Resumo:
The composition of the carnivore community influences the different forms of inter-specific interactions. Furthermore, inter-specific interactions of carnivores have important implications for intra-guild competition, epidemiology and strategies of species-specific population management. Zoonooses, such as rabies, are diseases that can be transmitted from wildlife to people. Knowing the ecological characteristics of the species helps us to choose the right preventive actions and to time them accurately. In this thesis, I have studied how raccoon dogs Nyctereutes procyonoides, European badgers Meles meles, red foxes Vulpes vulpes and domestic cats Felis silvestris catus act as members of carnivore community, and how these interactions relate to the transmission risk of rabies. In the study area, these species form a community of medium-sized and rather generalist predators. They live in the same areas, in spatially and temporally overlapping home ranges and use the same habitats and dens and even have similar diets. However, there is no direct evidence of competition. Shared dens point to good tolerance of other species. Numerous observations of animals moving in each other’s proximity give similar clues. However, overlapping home ranges and similar habitat preferences lead to frequent inter-specific contacts, which increase the risk of possible rabies transmission. Also, the new insight of habitat use gained by this study illustrates the similar favouring of deciduous forests and fields by these sympatric medium-sized carnivores, creating a basis for contact zones, i.e. risky habitats for rabies transmission and spread. This study is so far the only simultaneous radio tracking study of raccoon dogs, badgers, foxes and cats. These results give new insight of the interactions in the carnivore community, as well as of the behaviour of each individual species. Also, these results have significant implications for the planning of rabies control. In order to reach viable management decisions, not only one or two species should be taken into consideration, but the whole community. In particular, this changes the perspective to inter-specific contacts, animal densities, densities of individuals susceptible to diseases and the magnitude of preventive actions. Rabies should be considered as a multi-vector disease, at least in Finland and the Baltic states. It is of interest for disease management to be able to model an epizootic with local parameters to reflect the real situation and also to suite best the local management needs.
Resumo:
In Africa various species of Combretum, Terminalia and Pteleopsis are used in traditional medicine. Despite of this, some species of these genera have still not been studied for their biological effects to validate their traditional uses. The aim of this work has been to document the ethnomedicinal uses of several species of Combretum and Terminalia in Mbeya region, south-western Tanzania, and to use this information for finding species with good antimicrobial and cytotoxic potential. During a five weeks expedition to Tanzania in spring 1999 sixteen different species of Combretum and Terminalia, as well as Pteleopsis myrtifolia were collected from various locations in the districts of Mbeya, Iringa and Dar-es-Salaam. Traditional healers in seven different villages in the Mbeya region were interviewed in Swahili and Nyakyusa on the medicinal uses of Combretum and Terminalia species shown to them. A questionnaire was used during the interviews. The results of the interviews correlated well between different villages, the same species being used in similar ways in different villages. Of the ten species shown to the healers six were frequently used for treatment of skin diseases, bacterial infections, diarrhea, oedema and wounds. The dried plants were most commonly prepared into hot water decoctions or mixed into maize porridge, Ugali. Infusions made from dried or fresh plant material were also common. Wounds and topical infections were treated with ointments made from the dried plant material mixed with sheep fat. Twenty-one extracts of six species of Combretum and four of Terminalia, collected from Tanzania, were screened for their antibacterial effects against two gram-negative and five gram-positive bacteria, as well as the yeast, Candida albicans, using an agar diffusion method. Most of the screened plants showed substantial antimicrobial activity. A methanolic root extract of T. sambesiaca showed the most potent antibacterial effects of all the plant species screened, and gave a MIC value of 0.9 mg/ml against Enterobacter aerogenes. Also root extracts of T. sericea and T. kaiserana gave excellent antimicrobial effects, and notably a hot water extract of T. sericea was as potent as extracts of this species made from EtOH and MeOH. Thus, the traditional way of preparing T. sericea into hot water decoctions seems to extract antimicrobial compounds. Thirty-five extracts of five species of Terminalia, ten of Combretum and Pteleopsis myrtifolia were screened for their antifungal effects against five species of yeast (Candida spp.) and Cryptococcus neoformans. The species differed from each other to their antifungal effects, some being very effective whereas others showed no antifungal effects. The most effective extracts showed antifungal effects comparable to the standard antibiotics itraconazol and amphotericin B. Species of Terminalia gave in general stronger antifungal effects than those of Combretum. The best effects were obtained with methanolic root extracts of T. sambesiaca, T. sericea and T. kaiserana, and this investigation indicates that decoctions of these species might be used for treatment of HIV-related fungal infections. Twenty-seven crude extracts of eight species of Combretum, five of Terminalia and Pteleopsis myrtifolia were evaluated for their cytotoxic effects against human cancer cell lines (HeLa, cervical carcinoma; MCF 7, breast carcinoma, T 24 bladder carcinoma) and one endothelial cell line (BBCE, bovine brain capillary endothelial cells). The most outstanding effects were obtained with a leaf extract of Combretum fragrans, which nearly totally inhibited the proliferation of T 24 and HeLa cells at a concentration of 25 ug/ml and inhibited 60 % of the growth of the HeLa cells at a concentration of 4.3 ug/ml. The species of Terminalia were less cytotoxically potent than the Combretum species, although T. sericea and T. sambesiaca gave good cytotoxic effects (< 30 % proliferation). In summary this study indicates that some of the species of Terminalia, Combretum and Pteleopsis, used in Tanzanian traditional medicine, are powerful inhibitors of both microbial and cancer cell growth. In depth studies would be needed to find the active compounds behind these biological activities.
Resumo:
The seasonal occurrence of sea ice that annually covers almost half the Baltic Sea area provides a unique habitat for halo- and cold temperature-tolerant extremophiles. Baltic Sea ice biology has more than 100 years of tradition that began with the floristic observation of species by the early pioneers using light microscopic techniques that were the only thing available at the time. Since the discovery of life within sea ice, more technologies have become available for taxonomy. Electron microscopy and genetic evidence have been used to identify sea ice biota revealing increased numbers of taxa. Meanwhile ecologists have used light microscopic cell enumeration in addition to the chemical and physical properties of sea ice in attempts to explain the food web structure of sea ice and its functions. Thus, during the Baltic winter, the sea ice hosts more abundant and diverse microbial communities than the water column beneath it. These communities are typically dominated by autotrophic diatoms together with a diverse assortment of dinoflagellates, auto- and heterotrophic flagellates, ciliates, metazoan rotifers and bacteria, which are mostly responsible for the recycling of nutrients. This thesis comprises ecological and systematic studies. In addition to the results of the previous studies carried out on landfast ice, the data presented here provide new insight into the spatial distribution of pelagial sea ice, which has remained largely unexplored. The studies reveal spatial heterogeneity in the pelagial sea ice of the Gulf of Bothnia. There were mismatches in chlorophyll-a concentrations and in photosynthetic efficiencies of the communities studied. The temporal succession was followed and experimental studies performed investigating the community responses towards increased or decreased light in landfast ice in the Gulf of Finland. The systematic studies carried out with established dinoflagellate cultures revealed a new resting cyst belonging to common sea ice dinoflagellate, Scrippsiella hangoei (Schiller) Larsen 1995. The cyst can be used to explain the overwintering of this species during prolonged periods of darkness. The dissimilarities and similarities in the material isolated from the sea ice called for description of a new subspecies Heterocapsa arctica ssp. frigida. The cells obtained in the cultured material were unlike those of the previously described species, necessitating description of ssp. frigida. As a result of its own unique habitus, the subspecies had been noted by Finnish taxonomists during the past three decades and thus its annual occurrence and geographical distribution in the Baltic Sea. This illustrates how combining ecology and systematics increases our understanding of organisms.
Resumo:
The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.
Resumo:
Semi-natural grasslands are the most important agricultural areas for biodiversity. The present study investigates the effects of traditional livestock grazing and mowing on plant species richness, the main emphasis being on cattle grazing in mesic semi-natural grasslands. The two reviews provide a thorough assessment of the multifaceted impacts and importance of grazing and mowing management to plant species richness. It is emphasized that livestock grazing and mowing have partially compensated the suppression of major natural disturbances by humans and mitigated the negative effects of eutrophication. This hypothesis has important consequences for nature conservation: A large proportion of European species originally adapted to natural disturbances may be at present dependent on livestock grazing and / or mowing. Furthermore, grazing and mowing are key management methods to mitigate effects of nutrient-enrichment. The species composition and richness in old (continuously grazed), new (grazing restarting 3-8 years ago) and abandoned (over 10 years) pastures differed consistently across a range of spatial scales, and was intermediate in new pastures compared to old and abandoned pastures. In mesic grasslands most plant species were shown to benefit from cattle grazing. Indicator species of biologically valuable grasslands and rare species were more abundant in grazed than in abandoned grasslands. Steep S-SW-facing slopes are the most suitable sites for many grassland plants and should be prioritized in grassland restoration. The proportion of species trait groups benefiting from grazing was higher in mesic semi-natural grasslands than in dry and wet grasslands. Consequently, species trait responses to grazing and the effectiveness of the natural factors limiting plant growth may be intimately linked High plant species richness of traditionally mowed and grazed areas is explained by numerous factors which operate on different spatial scales. Particularly important for maintaining large scale plant species richness are evolutionary and mitigation factors. Grazing and mowing cause a shift towards the conditions that have occurred during the evolutionary history of European plant species by modifying key ecological factors (nutrients, pH and light). The results of this Dissertation suggest that restoration of semi-natural grasslands by private farmers is potentially a useful method to manage biodiversity in the agricultural landscape. However, the quality of management is commonly improper, particularly due to financial constraints. For enhanced success of restoration, management regulations in the agri-environment scheme need to be defined more explicitly and the scheme should be revised to encourage management of biodiversity.
Resumo:
Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.
Fire histories and tree ages in unmanaged boreal forests in Eastern Fennoscandia and Onega peninsula
Resumo:
One major reason for the global decline of biodiversity is habitat loss and fragmentation. Conservation areas can be designed to reduce biodiversity loss, but as resources are limited, conservation efforts need to be prioritized in order to achieve best possible outcomes. The field of systematic conservation planning developed as a response to opportunistic approaches to conservation that often resulted in biased representation of biological diversity. The last two decades have seen the development of increasingly sophisticated methods that account for information about biodiversity conservation goals (benefits), economical considerations (costs) and socio-political constraints. In this thesis I focus on two general topics related to systematic conservation planning. First, I address two aspects of the question about how biodiversity features should be valued. (i) I investigate the extremely important but often neglected issue of differential prioritization of species for conservation. Species prioritization can be based on various criteria, and is always goal-dependent, but can also be implemented in a scientifically more rigorous way than what is the usual practice. (ii) I introduce a novel framework for conservation prioritization, which is based on continuous benefit functions that convert increasing levels of biodiversity feature representation to increasing conservation value using the principle that more is better. Traditional target-based systematic conservation planning is a special case of this approach, in which a step function is used for the benefit function. We have further expanded the benefit function framework for area prioritization to address issues such as protected area size and habitat vulnerability. In the second part of the thesis I address the application of community level modelling strategies to conservation prioritization. One of the most serious issues in systematic conservation planning currently is not the deficiency of methodology for selection and design, but simply the lack of data. Community level modelling offers a surrogate strategy that makes conservation planning more feasible in data poor regions. We have reviewed the available community-level approaches to conservation planning. These range from simplistic classification techniques to sophisticated modelling and selection strategies. We have also developed a general and novel community level approach to conservation prioritization that significantly improves on methods that were available before. This thesis introduces further degrees of realism into conservation planning methodology. The benefit function -based conservation prioritization framework largely circumvents the problematic phase of target setting, and allowing for trade-offs between species representation provides a more flexible and hopefully more attractive approach to conservation practitioners. The community-level approach seems highly promising and should prove valuable for conservation planning especially in data poor regions. Future work should focus on integrating prioritization methods to deal with multiple aspects in combination influencing the prioritization process, and further testing and refining the community level strategies using real, large datasets.
Resumo:
The thesis provides a proposal to divide Alycidae G. Canestrini & Fanzago into two subfamilies and four tribes. This new hierarchy is based on a reassessment and reranking of new and previously known synapomorphies of the clusters concerned by cladistic analysis, using 60 morphological characters for 48 ingroup species. The basic characters of the taxa are illustrated either by SEM micrographs (Scanning Electron Microscopy) or by outline drawings. The presented classification includes the definitions of Alycini G. Canestrini & Fanzago new rank; Bimichaeliini Womersley new rank; Petralycini new rank; and the (re)descriptions of Alycus C.L. Koch, Pachygnathus Dugès, Amphialycus Zachvatkin, Bimichaelia Thor and Laminamichaelia gen. nov. The species described or redescribed are: Pachygnathus wasastjernae sp. nov. from Kvarken (Merenkurkku), Finland; Pachygnathus villosus Dugès (in Oken); Alycus roseus C.L. Koch; Alycus denasutus (Grandjean) comb. and stat. nov.; Alycus trichotus (Grandjean) comb. nov.; Alycus marinus (Schuster) comb. nov.; Amphialycus (Amphialycus) pentophthalmus Zachvatkin; Amphialycus (Amphialycus) leucogaster (Grandjean); and Amphialycus (Orthacarus) oblongus (Halbert) comb. nov.; Bimichaelia augustana (Berlese); Bimichaelia sarekensis Trägårdh; Laminamichaelia setigera (Berlese) comb. nov.; Laminamichelia arbusculosa (Grandjean) comb. nov.; Laminamichelia subnuda (Berlese) comb. nov. and Petralycus unicornis Grandjean. Fourteen nominal species were found to be junior synonymies. The importance of sensory organs in taxonomy is well recognized, but inclusion of the elaborate skin pattern seemed to improve essentially the usefulness of the prodorsal sensory area. The detailed pictures of the prodorsa of the European alycids could be used like passport photographs for the species. A database like this of prodorsa of other mite taxa as well might be an answer to future needs of species identification in soil zoology, ecology and conservation.
Resumo:
Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.
Resumo:
Visual pigments of different animal species must have evolved at some stage to match the prevailing light environments, since all visual functions depend on their ability to absorb available photons and transduce the event into a reliable neural signal. There is a large literature on correlation between the light environment and spectral sensitivity between different fish species. However, little work has been done on evolutionary adaptation between separated populations within species. More generally, little is known about the rate of evolutionary adaptation to changing spectral environments. The objective of this thesis is to illuminate the constraints under which the evolutionary tuning of visual pigments works as evident in: scope, tempo, available molecular routes, and signal/noise trade-offs. Aquatic environments offer Nature s own laboratories for research on visual pigment properties, as naturally occurring light environments offer an enormous range of variation in both spectral composition and intensity. The present thesis focuses on the visual pigments that serve dim-light vision in two groups of model species, teleost fishes and mysid crustaceans. The geographical emphasis is in the brackish Baltic Sea area with its well-known postglacial isolation history and its aquatic fauna of both marine and fresh-water origin. The absorbance spectrum of the (single) dim-light visual pigment were recorded by microspectrophotometry (MSP) in single rods of 26 fish species and single rhabdoms of 8 opossum shrimp populations of the genus Mysis inhabiting marine, brackish or freshwater environments. Additionally, spectral sensitivity was determined from six Mysis populations by electroretinogram (ERG) recording. The rod opsin gene was sequenced in individuals of four allopatric populations of the sand goby (Pomatoschistus minutus). Rod opsins of two other goby species were investigated as outgroups for comparison. Rod absorbance spectra of the Baltic subspecies or populations of the primarily marine species herring (Clupea harengus membras), sand goby (P. minutus), and flounder (Platichthys flesus) were long-wavelength-shifted compared to their marine populations. The spectral shifts are consistent with adaptation for improved quantum catch (QC) as well as improved signal-to-noise ratio (SNR) of vision in the Baltic light environment. Since the chromophore of the pigment was pure A1 in all cases, this has apparently been achieved by evolutionary tuning of the opsin visual pigment. By contrast, no opsin-based differences were evident between lake and sea populations of species of fresh-water origin, which can tune their pigment by varying chromophore ratios. A more detailed analysis of differences in absorbance spectra and opsin sequence between and within populations was conducted using the sand goby as model species. Four allopatric populations from the Baltic Sea (B), Swedish west coast (S), English Channel (E), and Adriatic Sea (A) were examined. Rod absorbance spectra, characterized by the wavelength of maximum absorbance (λmax), differed between populations and correlated with differences in the spectral light transmission of the respective water bodies. The greatest λmax shift as well as the greatest opsin sequence difference was between the Baltic and the Adriatic populations. The significant within-population variation of the Baltic λmax values (506-511 nm) was analyzed on the level of individuals and was shown to correlate well with opsin sequence substitutions. The sequences of individuals with λmax at shorter wavelengths were identical to that of the Swedish population, whereas those with λmax at longer wavelengths additionally had substitution F261F/Y in the sixth transmembrane helix of the protein. This substitution (Y261) was also present in the Baltic common gobies and is known to redshift spectra. The tuning mechanism of the long-wavelength type Baltic sand gobies is assumed to be the co-expression of F261 and Y261 in all rods to produce ≈ 5 nm redshift. The polymorphism of the Baltic sand goby population possibly indicates ambiguous selection pressures in the Baltic Sea. The visual pigments of all lake populations of the opossum shrimp (Mysis relicta) were red-shifted by 25 nm compared with all Baltic Sea populations. This is calculated to confer a significant advantage in both QC and SNR in many humus-rich lakes with reddish water. Since only A2 chromophore was present, the differences obviously reflect evolutionary tuning of the visual protein, the opsin. The changes have occurred within the ca. 9000 years that the lakes have been isolated from the Sea after the most recent glaciation. At present, it seems that the mechanism explaining the spectral differences between lake and sea populations is not an amino acid substitution at any other conventional tuning site, but the mechanism is yet to be found.