17 resultados para The job network


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of the present study was to investigate the influence of different manifestations of cerebral SVD on poststroke survival and ischemic stroke recurrence in long-term follow-up. The core imaging features of small-vessel disease (SVD) are confluent and extensive white matter changes (WMC) and lacunar infarcts. These are associated with minor motor deficits but a major negative influence on cognition, mood, and functioning in daily life, resulting from small-vessel lesions in the fronto-subcortical brain network. These sub-studies were conducted as part of the Helsinki Stroke Aging Memory (SAM) study. The SAM cohort consisted of 486 consecutive patients aged 55 to 85 years who were admitted to Helsinki University Central Hospital with acute ischemic stroke. The study included comprehensive clinical, neuropsychological, psychiatric and radiological assessment three months poststroke. The patients were followed up up for 12 years using extensive national registers. The effect of different manifestations of cerebral SVD on poststroke survival and stroke recurrence was analyzed controlling for factors such as age, education, and cardiovascular risk factors. Poststroke dementia and cognitive impairment relate to poor long-term survival. In particular, deficits in executive functions as well as visuospatial and constructional abilities predict poor outcome. The predictive value of cognitive deficits is further underlined by the finding that depression-executive dysfunction syndrome (DES), but not depression in itself, is associated with poor poststroke survival. Delirium is not independently associated with increased risk for long-term poststroke mortality, although it is associated with poststroke dementia. Furthermore, acute index stroke attributable to SVD is associated with poorer long-term survival and a higher risk for cardiac death than other stroke subtypes. Severe WMC, a surrogate of SVD, is independently related to an increased risk of stroke recurrence at five years. In summary, cognitive poststroke outcomes reflecting changes in the executive network brain, and the presence of cerebral SVD are important determinants of poststroke mortality and ischemic stroke recurrence, regardless of whether SVD is the cause of the index stroke or a condition concurrent to some other etiology.