25 resultados para The brain


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

End-stage renal disease is an increasingly common pathologic condition, with a current incidence of 87 per million inhabitants in Finland. It is the end point of various nephropathies, most common of which is the diabetic nephropathy. This thesis focuses on exploring the role of nephrin in the pathogenesis of diabetic nephropathy. Nephrin is a protein of the glomerular epithelial cell, or podocyte, and it appears to have a crucial function as a component of the filtration slit diaphragm in the kidney glomeruli. Mutations in the nephrin gene NPHS1 lead to massive proteinuria. Along with the originally described location in the podocyte, nephrin has now been found to be expressed in the brain, testis, placenta and pancreatic beta cells. In type 1 diabetes, the fundamental pathologic event is the autoimmune destruction of the beta cells. Autoantibodies against various beta cell antigens are generated during this process. Due to the location of nephrin in the beta cell, we hypothesized that patients with type 1 diabetes may present with nephrin autoantibodies. We also wanted to test whether such autoantibodies could be involved in the pathogenesis of diabetic nephropathy. The puromycin aminonucleoside nephrosis model in the rat, the streptozotocin model in the rat, and the non-obese diabetic mice were studied by immunochemical techniques, in situ -hybridization and the polymerase chain reaction -based methods to resolve the expression of nephrin mRNA and protein in experimental nephropathies. To test the effect of antiproteinuric therapies, streptozotocin-treated rats were also treated with aminoguanidine or perindopril. To detect nephrin antibodies we developed a radioimmunoprecipitation assay and analyzed follow-up material of 66 patients with type 1 diabetes. In the puromycin aminonucleoside nephrosis model, the nephrin expression level was uniformly decreased together with the appearance of proteinuria. In the streptozotocin-treated rats and in non-obese diabetic mice, the nephrin mRNA and protein expression levels were seen to increase in the early stages of nephropathy. However, as observed in the streptozotocin rats, in prolonged diabetic nephropathy the expression level decreased. We also found out that treatment with perindopril could not only prevent proteinuria but also a decrease in nephrin expression in streptozotocin-treated rats. Aminoguanidine did not have an effect on nephrin expression, although it could attenuate the proteinuria. Circulating antibodies to nephrin in patients with type 1 diabetes were found, although there was no correlation with the development of diabetic nephropathy. At diagnosis, 24% of the patients had these antibodies, while at 2, 5 and 10 years of disease duration the respective proportions were 23%, 14% and 18%. During the total follow-up of 16 to 19 years after diagnosis of diabetes, 14 patients had signs of nephropathy and 29% of them tested positive for nephrin autoantibodies in at least one sample. In conclusion, this thesis work could show changes of nephrin expression along with the development of proteinuria. The autoantibodies against nephrin are likely generated in the autoimmune process leading to type 1 diabetes. However, according to the present work it is unlikely that these autoantibodies are contributing significantly to the development of diabetic nephropathy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

What can the statistical structure of natural images teach us about the human brain? Even though the visual cortex is one of the most studied parts of the brain, surprisingly little is known about how exactly images are processed to leave us with a coherent percept of the world around us, so we can recognize a friend or drive on a crowded street without any effort. By constructing probabilistic models of natural images, the goal of this thesis is to understand the structure of the stimulus that is the raison d etre for the visual system. Following the hypothesis that the optimal processing has to be matched to the structure of that stimulus, we attempt to derive computational principles, features that the visual system should compute, and properties that cells in the visual system should have. Starting from machine learning techniques such as principal component analysis and independent component analysis we construct a variety of sta- tistical models to discover structure in natural images that can be linked to receptive field properties of neurons in primary visual cortex such as simple and complex cells. We show that by representing images with phase invariant, complex cell-like units, a better statistical description of the vi- sual environment is obtained than with linear simple cell units, and that complex cell pooling can be learned by estimating both layers of a two-layer model of natural images. We investigate how a simplified model of the processing in the retina, where adaptation and contrast normalization take place, is connected to the nat- ural stimulus statistics. Analyzing the effect that retinal gain control has on later cortical processing, we propose a novel method to perform gain control in a data-driven way. Finally we show how models like those pre- sented here can be extended to capture whole visual scenes rather than just small image patches. By using a Markov random field approach we can model images of arbitrary size, while still being able to estimate the model parameters from the data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrolethalus syndrome (HLS) is a severe fetal malformation syndrome that is inherited by an autosomal recessive manner. HLS belongs to the Finnish disease heritage, an entity of rare diseases that are more prevalent in Finland than in other parts of the world. The phenotypic spectrum of the syndrome is wide and it is characterized by several developmental abnormalities, including hydrocephalus and absent midline structures in the brain, abnormal lobation of the lungs, polydactyly as well as micrognathia and other craniofacial anomalies. Polyhydramnios are relatively frequent during pregnancy. HLS can nowadays be effectively identified by ultrasound scan already at the end of the first trimester of pregnancy. One of the main goals in this study was to identify and characterize the gene defect underlying HLS. The defect was found from a previously unknown gene that was named HYLS1. Identification of the gene defect made it possible to confirm the HLS diagnosis genetically, an aspect that provides valuable information for the families in which a fetus is suspected to have HLS. Neuropathological findings of mutation confirmed HLS cases were described for the first time in detail in this study. Also, detailed general pathological findings were described. Since HYLS1 was an unknown gene with no relatives in the known gene families, many functional studies were performed in order to unravel the function of the gene and of the protein it codes for. Studies showed, for example, that the subcellular localization of the HYLS1 protein was different when the normal and the defective forms were compared. In addition, HYLS1 was shown to possess transactivation potential which was significantly diminished in the defective form. According to the results of this study it can be stated that HYLS1 most likely participates in transcriptional regulation and also in the regulation of cholesterol metabolism and that the function of HYLS1 is critical for normal fetal development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Opiod dependence is a chronic severe brain disorder associated with enormous health and social problems. The relapse back to opioid abuse is very high especially in early abstinence, but neuropsychological and neurophysiological deficits during opioid abuse or soon after cessation of opioids are scarcely investigated. Also the structural brain changes and their correlations with the length of opioid abuse or abuse onset age are not known. In this study the cognitive functions, neural basis of cognitive dysfunction, and brain structural changes was studied in opioid-dependent patients and in age and sex matched healthy controls. Materials and methods: All subjects participating in the study, 23 opioid dependents of whom, 15 were also benzodiazepine and five cannabis co-dependent and 18 healthy age and sex matched controls went through Structured Clinical Interviews (SCID) to obtain DSM-IV axis I and II diagnosis and to exclude psychiatric illness not related to opioid dependence or personality disorders. Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) measurements were done on 21 opioid-dependent individuals on the day of hospitalization for withdrawal therapy. The neural basis of auditory processing was studied and pre-attentive attention and sensory memory were investigated. During the withdrawal 15 opioid-dependent patients participated in neuropsychological tests, measuring fluid intelligence, attention and working memory, verbal and visual memory, and executive functions. Fifteen healthy subjects served as controls for the MEG-EEG measurements and neuropsychological assessment. The brain magnetic resonance imaging (MRI) was obtained from 17 patients after approximately two weeks abstinence, and from 17 controls. The areas of different brain structures and the absolute and relative volumes of cerebrum, cerebral white and gray matter, and cerebrospinal fluid (CSF) spaces were measured and the Sylvian fissure ratio (SFR) and bifrontal ratio were calculated. Also correlation between the cerebral measures and neuropsychological performance was done. Results: MEG-EEG measurements showed that compared to controls the opioid-dependent patients had delayed mismatch negativity (MMN) response to novel sounds in the EEG and P3am on the contralateral hemisphere to the stimulated ear in MEG. The equivalent current dipole (ECD) of N1m response was stronger in patients with benzodiazepine co-dependence than those without benzodiazepine co-dependence or controls. In early abstinence the opioid dependents performed poorer than the controls in tests measuring attention and working memory, executive function and fluid intelligence. Test results of the Culture Fair Intelligence Test (CFIT), testing fluid intelligence, and Paced Auditory Serial Addition Test (PASAT), measuring attention and working memory correlated positively with the days of abstinence. MRI measurements showed that the relative volume of CSF was significantly larger in opioid dependents, which could also be seen in visual analysis. Also Sylvian fissures, expressed by SFR were wider in patients, which correlated negatively with the age of opioid abuse onset. In controls the relative gray matter volume had a positive correlation with composite cognitive performance, but this correlation was not found in opioid dependents in early abstinence. Conclusions: Opioid dependents had wide Sylvian fissures and CSF spaces indicating frontotemporal atrophy. Dilatation of Sylvian fissures correlated with the abuse onset age. During early withdrawal cognitive performance of opioid dependents was impaired. While intoxicated the pre-attentive attention to novel stimulus was delayed and benzodiazepine co-dependence impaired sound detection. All these changes point to disturbances on frontotemporal areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acute pain has substantial survival value because of its protective function in the everyday environment. Instead, chronic pain lacks survival and adaptive function, causes great amount of individual suffering, and consumes the resources of the society due to the treatment costs and loss of production. The treatment of chronic pain has remained challenging because of inadequate understanding of mechanisms working at different levels of the nervous system in the development, modulation, and maintenance of chronic pain. Especially in unclear chronic pain conditions the treatment may be suboptimal because it can not be targeted to the underlying mechanisms. Noninvasive neuroimaging techniques have greatly contributed to our understanding of brain activity associated with pain in healthy individuals. Many previous studies, focusing on brain activations to acute experimental pain in healthy individuals, have consistently demonstrated a widely-distributed network of brain regions that participate in the processing of acute pain. The aim of the present thesis was to employ non-invasive brain imaging to better understand the brain mechanisms in patients suffering from chronic pain. In Study I, we used magnetoencephalography (MEG) to measure cortical responses to painful laser stimulation in healthy individuals for optimization of the stimulus parameters for patient studies. In Studies II and III, we monitored with MEG the cortical processing of touch and acute pain in patients with complex regional pain syndrome (CRPS). We found persisting plastic changes in the hand representation area of the primary somatosensory (SI) cortex, suggesting that chronic pain causes cortical reorganization. Responses in the posterior parietal cortex to both tactile and painful laser stimulation were attenuated, which could be associated with neglect-like symptoms of the patients. The primary motor cortex reactivity to acute pain was reduced in patients who had stronger spontaneous pain and weaker grip strength in the painful hand. The tight coupling between spontaneous pain and motor dysfunction supports the idea that motor rehabilitation is important in CRPS. In Studies IV and V we used MEG and functional magnetic resonance imaging (fMRI) to investigate the central processing of touch and acute pain in patients who suffered from recurrent herpes simplex virus infections and from chronic widespread pain in one side of the body. With MEG, we found plastic changes in the SI cortex, suggesting that many different types of chronic pain may be associated with similar cortical reorganization. With fMRI, we found functional and morphological changes in the central pain circuitry, as an indication of central contribution for the pain. These results show that chronic pain is associated with morphological and functional changes in the brain, and that such changes can be measured with functional imaging.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The overlapping sound pressure waves that enter our brain via the ears and auditory nerves must be organized into a coherent percept. Modelling the regularities of the auditory environment and detecting unexpected changes in these regularities, even in the absence of attention, is a necessary prerequisite for orientating towards significant information as well as speech perception and communication, for instance. The processing of auditory information, in particular the detection of changes in the regularities of the auditory input, gives rise to neural activity in the brain that is seen as a mismatch negativity (MMN) response of the event-related potential (ERP) recorded by electroencephalography (EEG). --- As the recording of MMN requires neither a subject s behavioural response nor attention towards the sounds, it can be done even with subjects with problems in communicating or difficulties in performing a discrimination task, for example, from aphasic and comatose patients, newborns, and even fetuses. Thus with MMN one can follow the evolution of central auditory processing from the very early, often critical stages of development, and also in subjects who cannot be examined with the more traditional behavioural measures of auditory discrimination. Indeed, recent studies show that central auditory processing, as indicated by MMN, is affected in different clinical populations, such as schizophrenics, as well as during normal aging and abnormal childhood development. Moreover, the processing of auditory information can be selectively impaired for certain auditory attributes (e.g., sound duration, frequency) and can also depend on the context of the sound changes (e.g., speech or non-speech). Although its advantages over behavioral measures are undeniable, a major obstacle to the larger-scale routine use of the MMN method, especially in clinical settings, is the relatively long duration of its measurement. Typically, approximately 15 minutes of recording time is needed for measuring the MMN for a single auditory attribute. Recording a complete central auditory processing profile consisting of several auditory attributes would thus require from one hour to several hours. In this research, I have contributed to the development of new fast multi-attribute MMN recording paradigms in which several types and magnitudes of sound changes are presented in both speech and non-speech contexts in order to obtain a comprehensive profile of auditory sensory memory and discrimination accuracy in a short measurement time (altogether approximately 15 min for 5 auditory attributes). The speed of the paradigms makes them highly attractive for clinical research, their reliability brings fidelity to longitudinal studies, and the language context is especially suitable for studies on language impairments such as dyslexia and aphasia. In addition I have presented an even more ecological paradigm, and more importantly, an interesting result in view of the theory of MMN where the MMN responses are recorded entirely without a repetitive standard tone. All in all, these paradigms contribute to the development of the theory of auditory perception, and increase the feasibility of MMN recordings in both basic and clinical research. Moreover, they have already proven useful in studying for instance dyslexia, Asperger syndrome and schizophrenia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The neuronal cell adhesion molecule ICAM-5 ICAM-5 (telencephalin) belongs to the intercellular adhesion molecule (ICAM)-subgroup of the immunoglobulin superfamily (IgSF). ICAMs participate in leukocyte adhesion and adhesion-dependent functions in the central nervous system (CNS) through interacting with the leukocyte-specific b2 integrins. ICAM-5 is found in the mammalian forebrain, appears at the time of birth, and is located at the cell soma and neuronal dendrites. Recent studies also show that it is important for the regulation of immune functions in the brain and for the development and maturation of neuronal synapses. The clinical importance of ICAM-5 is still under investigation; it may have a role in the development of Alzheimer s disease (AD). In this study, the role of ICAM-5 in neuronal differentiation and its associations with a-actinin and N-methyl-D-aspartic acid (NMDA) receptors were examined. NMDA receptors (NMDARs) are known to be involved in many neuronal functions, including the passage of information from one neuron to another one, and thus it was thought important to study their role related to ICAM-5. The results suggested that ICAM-5 was able to induce dendritic outgrowth through homophilic adhesion (ICAM-5 monomer binds to another ICAM-5 monomer in the same or neighbouring cell), and the homophilic binding activity appeared to be regulated by monomer/multimer transition. Moreover, ICAM-5 binding to a-actinin was shown to be important for neuritic outgrowth. It was examined whether matrix metalloproteinases (MMPs) are the main enzymes involved in ICAM-5 ectodomain cleavage. The results showed that stimulation of NMDARs leads to MMP activation, cleavage of ICAM-5 and it is accompanied by dendritic spine maturation. These findings also indicated that ICAM-5 and NMDA receptor subunit 1 (NR1) compete for binding to a-actinin, and ICAM-5 may regulate the NR1 association with the actin cytoskeleton. Thus, it is concluded that ICAM-5 is a crucial cell adhesion molecule involved in the development of neuronal synapses, especially in the regulation of dendritic spine development, and its functions may also be involved with memory formation and learning.