19 resultados para THIOREDOXIN-BINDING PROTEIN-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In every cell, actin is a key component involved in migration, cytokinesis, endocytosis and generation of contraction. In non-muscle cells, actin filaments are very dynamic and regulated by an array of proteins that interact with actin filaments and/or monomeric actin. Interestingly, in non-muscle cells the barbed ends of the filaments are the predominant assembly place, whereas in muscle cells actin dynamics was reported to predominate at the pointed ends of thin filaments. The actin-based thin filament pointed (slow growing) ends extend towards the middle of the sarcomere's M-line where they interact with the thick filaments to generate contraction. The actin filaments in muscle cells are organized into a nearly crystalline array and are believed to be significantly less dynamic than the ones in other cell types. However, the exact mechanisms of the sarcomere assembly and turnover are largely unknown. Interestingly, although sarcomeric actin structures are believed to be relatively non-dynamic, many proteins promoting actin dynamics are expressed also in muscle cells (e.g ADF/cofilin, cyclase-associated protein and twinfilin). Thus, it is possible that the muscle-specific isoforms of these proteins promote actin dynamics differently from their non-muscle counterparts, or that actin filaments in muscle cells are more dynamic than previously thought. To study protein dynamics in live muscle cells, I used primary cell cultures of rat cardiomyocytes. My studies revealed that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, I discovered that the turnover of actin filaments depends on contractility of the cardiomyocytes and that the contractility-induced actin dynamics plays an important role in sarcomere maturation. Together with previous studies those findings suggest that sarcomeres undergo two types of actin dynamics: (1) contractility-dependent turnover of whole filaments and (2) regulatory pointed end monomer exchange to maintain correct thin filament length. Studies involving an actin polymerization inhibitor suggest that the dynamic actin filament pool identified here is composed of filaments that do not contribute to contractility. Additionally, I provided evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. In addition, during these studies we learned that isoforms of actin monomer binding protein twinfilin, Twf-1 and Twf-2a localise to myofibrils in cardiomyocytes and may thus contribute to actin dynamics in myofibrils. Finally, in collaboration with Roberto Dominguez s laboratory we characterized a new actin nucleator in muscle cells - leiomodin (Lmod). Lmod localises towards actin filament pointed ends and its depletion by siRNA leads to severe sarcomere abnormalities in cardiomyocytes. The actin filament nucleation activity of Lmod is enhanced by interactions with tropomyosin. We also revealed that Lmod expression correlates with the maturation of myofibrils, and that it associates with sarcomeres only at relatively late stages of myofibrillogenesis. Thus, Lmod is unlikely to play an important role in myofibril formation, but rather might be involved in the second step of the filament arrangement and/or maintenance through its ability to promote tropomyosin-induced actin filament nucleation occurring at the filament pointed ends. The results of these studies provide valuable new information about the molecular mechanisms underlying muscle sarcomere assembly and turnover. These data offer important clues to understanding certain physiological and pathological behaviours of muscle cells. Better understanding of the processes occurring in muscles might help to find strategies for determining, diagnosis, prognosis and therapy in heart and skeletal muscles diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite its bad reputation in the mass media, cholesterol is an indispensable constituent of cellular membranes and vertebrate life. It is, however, also potentially lethal as it may accumulate in the arterial intima causing atherosclerosis or elsewhere in the body due to inherited conditions. Studying cholesterol in cells, and research on how the cell biology of cholesterol affects on system level is essential for a better understanding of the disease states associated with cholesterol and for the development of new therapies for these conditions. On its way to the cell, exogenous cholesterol traverses through endosomes, transport vesicles involved in internalizing material to cells, and needs to be transported out of this compartment. This endosomal pool of cholesterol is important for understanding both the common disorders of metabolism and the more rare hereditary disorders of cholesterol metabolism. The study of cholesterol in cells has been hampered by the lack of bright fluorescent sterol analogs that would resemble cholesterol enough to be used in cellular studies. In the first study of my thesis, we present a new sterol analog, Boron-Dipyrromethene (BODIPY)-cholesterol for visualizing sterols in living cells and organism. This fluorescent cholesterol derivative is shown to behave similarly to cholesterol both by atomic scale computer simulations and biochemical experiments. We characterize its localization inside different types of living cells and show that it can be used to study sterol trafficking in living organisms. Two sterol binding proteins associated with the endosomal membrane; the Niemann-Pick type C disease protein 1 (NPC1) and the Oxysterol Binding Protein Related Protein 1 (ORP1) are the subjects of the rest of this study. Sensing cholesterol on endosomes, transporting lipids away from this compartment and the effects these lipids play on cellular metabolism are considered. In the second study we characterize how the NPC1 protein affects lipid metabolism. We show that this cholesterol binding protein affects synthesis of triglycerides and that genetic polymorphisms or a genetic defect in the NPC1 gene affect triglyceride on the whole body level. These effects take place via regulation of carbon fluxes to different lipid classes in cells. In the third part we characterize the effects of another endosomal sterol binding protein, ORP1L on the function and motility of endosomes. Specifically we elucidate how a mutation in the ability of ORP1L to bind sterols affects its behavior in cells, and how a change in ORP1L levels in cells affects the localization, degradative capacity and motility of endosomes. In addition we show that ORP1L manipulations affect cholesterol balance also in macrophages, a cell type important for the development of atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurons can be divided into various classes according to their location, morphology, neurochemical identity and electrical properties. They form complex interconnected networks with precise roles for each cell type. GABAergic neurons expressing the calcium-binding protein parvalbumin (Pv) are mainly interneurons, which serve a coordinating function. Pv-cells modulate the activity of principal cells with high temporal precision. Abnormalities of Pv-interneuron activity in cortical areas have been linked to neuropsychiatric illnesses such as schizophrenia. Cerebellar Purkinje cells are known to be central to motor learning. They are the sole output from the layered cerebellar cortex to deep cerebellar nuclei. There are still many open questions about the precise role of Pv-neurons and Purkinje cells, many of which could be answered if one could achieve rapid, reversible cell-type specific modulation of the activity of these neurons and observe the subsequent changes at the whole-animal level. The aim of these studies was to develop a novel method for the modulation of Pv-neurons and Purkinje cells in vivo and to use this method to investigate the significance of inhibition in these neuronal types with a variety of behavioral experiments in addition to tissue autoradiography, electrophysiology and immunohistochemistry. The GABA(A) receptor γ2 subunit was ablated from Pv-neurons and Purkinje cells in four separate mouse lines. Pv-Δγ2 mice had wide-ranging behavioral alterations and increased GABA-insensitive binding indicative of an altered GABA(A) receptor composition, particularly in midbrain areas. PC-Δγ2 mice experienced little or no motor impairment despite the lack of inhibition in Purkinje cells. In Pv-Δγ2-partial rescue mice, a reversal of motor and cognitive deficits was observed in addition to restoration of the wild-type γ2F77 subunit to the reticular nucleus of thalamus and the cerebellar molecular layer. In PC-Δγ2-swap mice, zolpidem sensitivity was restored to Purkinje cells and the administration of systemic zolpidem evoked a transient motor impairment. On the basis of these results, it is concluded that this new method of cell-type specific modulation is a feasible way to modulate the activity of selected neuronal types. The importance of Purkinje cells to motor control supports previous studies, and the crucial involvement of Pv-neurons in a range of behavioral modalities is confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hantaviruses are one of the five genera of the vector-borne virus family Bunyaviridae. While other members of the family are transmitted via arthropods, hantaviruses are carried and transmitted by rodents and insectivores. Occasional transmission to humans occurs via inhalation of aerosolized rodent excreta. When transmitted to man hantaviruses cause hemorrhagic fever with renal syndrome (HFRS, in Eurasia, mortality ~10%) and hantavirus cardiopulmonary syndrome (HCPS, in the Americas, mortality ~40%). The single-stranded, negative-sense RNA genome of hantaviruses is in segments S, M and L that respectively encode for nucleocapsid (N), glycoproteins Gn and Gc, and RNA-dependent RNA-polymerase (RdRp or L protein). The genome segments, encapsidated by N protein to form ribonucleoprotein (RNP), are enclosed inside a lipid envelope decorated by spikes formed of Gn and Gc. The focus of this study was to understand the mechanisms and interactions through which the virion is formed and maintained. We observed that when extracted from virions both Gn and Gc favor homo- over hetero-oligomerization. The minimal glycoprotein complexes extracted from virion by detergent were observed, by using ultracentrifugation and gel filtration, to be tetrameric Gn and homodimeric Gc. These results led us to suggest a model where tetrameric Gn complexes are interconnected through homodimeric Gc units to form the grid-like surface architecture described for hantaviruses. This model was found to correlate with the three-dimensional (3D) reconstruction of virion surface created using cryo-electron tomography (cryo-ET). The 3D-density map showed the spike complex formed of Gn and Gc to be 10 nm high and to display a four-fold symmetry with dimensions of 15 nm times 15 nm. This unique square-shaped complex on a roughly round virion creates a hitch for the assembly, since a sphere cannot be broken into rectangles. Thus additional interactions are likely required for the virion assembly. In cryo-ET we observed that the RNP makes occasional contacts to the viral membrane, suggesting an interaction between the spike and RNP. We were able to demonstrate this interaction using various techniques, and showed that both Gn and Gc contribute to the interaction. This led us to suggest that in addition to the interactions between Gn and Gc, also the interaction between spike and RNP is required for assembly. We found galectin-3 binding protein (referred to as 90K) to co-purify with the virions and showed an interaction between 90K and the virion. Analysis of plasma samples taken from patients hospitalized for Puumala virus infection showed increased concentrations of 90K in the acute phase and the increased 90K level was found to correlate with several parameters that reflect the severity of acute HFRS. The results of these studies confirmed, but also challenged some of the dogmas on the structure and assembly of hantaviruses. We confirmed that Gn and RNP do interact, as long assumed. On the other hand we demonstrated that the glycoproteins Gn and Gc exist as homo-oligomers or appear in large hetero-oligomeric complexes, rather than form primarily heterodimers as was previously assumed. This work provided new insight into the structure and assembly of hantaviruses.