25 resultados para Stars: peculiar
Resumo:
New stars in galaxies form in dense, molecular clouds of the interstellar medium. Measuring how the mass is distributed in these clouds is of crucial importance for the current theories of star formation. This is because several open issues in them, such as the strength of different mechanism regulating star formation and the origin of stellar masses, can be addressed using detailed information on the cloud structure. Unfortunately, quantifying the mass distribution in molecular clouds accurately over a wide spatial and dynamical range is a fundamental problem in the modern astrophysics. This thesis presents studies examining the structure of dense molecular clouds and the distribution of mass in them, with the emphasis on nearby clouds that are sites of low-mass star formation. In particular, this thesis concentrates on investigating the mass distributions using the near infrared dust extinction mapping technique. In this technique, the gas column densities towards molecular clouds are determined by examining radiation from the stars that shine through the clouds. In addition, the thesis examines the feasibility of using a similar technique to derive the masses of molecular clouds in nearby external galaxies. The papers presented in this thesis demonstrate how the near infrared dust extinction mapping technique can be used to extract detailed information on the mass distribution in nearby molecular clouds. Furthermore, such information is used to examine characteristics crucial for the star formation in the clouds. Regarding the use of extinction mapping technique in nearby galaxies, the papers of this thesis show that deriving the masses of molecular clouds using the technique suffers from strong biases. However, it is shown that some structural properties can still be examined with the technique.
Resumo:
The paradoxical co-existence of conflicting logics governs practices in cultural organizations. This requires ‘balancing acts’ between artistic and managerial efforts, which are often subjects to struggle among the organizational members. This ethnographic study aims to go beyond either-or thinking on the paradoxical organizational context by examining how the organizational members of an opera house construct views on their organization in dialogical meaning-making processes. Various professional groups, dozens of upcoming productions, increased international cooperation, and global competition combined with scarce financial resources make opera houses a complex though interesting context for organization studies. In order to provide a deeper knowledge of the internal dynamics of an opera organization this thesis takes an interpretative view to examine the ways organizational members construct and make sense of their organization. How is the opera organization constructed by the organizational members? How do the members draw on different logics when relating to their organization? Or what are the elements that characterize the relational processes of organizational identity construction in an opera organization? The thesis aims to answer these questions by providing a detailed description of the everyday life of an opera organization and a particular focus put on organizational identity construction. The processes of organizational identity construction are approached from a relational point of view. This may involve various relations between multiple positions, different professional groups, other organizations in the cultural field or between past and present understandings of an organization. The study shows that the construction of an opera organization involves not only the two conflicting logics of art and economy, but also the logic of a national institution. The study suggests also that organizational identities are constructed through processes related to the dialogics of positions, work and management practices. The dialogics involve various struggles through which the organizational members find themselves between the different organizational aspects such as visiting ‘stars’ and an ensemble or between ‘Finnishness’ of opera productions and internationalization. In addition, the study argues that a struggle between different elements is a general mode of relation in cultural organizations and therefore an inherent and enduring aspect in the organizational identity construction. However, the space of ‘being in between’ involves both the enabling and constraining elements in the dialogical identity construction in the context of cultural organizations, which present the struggle in a more generative light.
Resumo:
The Master’s thesis examines historical memory of the Polish minority members in Lithuania with regard to how their interpretation of the common Polish-Lithuanian history reiterates or differs from the official Polish and Lithuanian narratives conveyed by the school textbooks. History teaching in high schools carries a crucial state-supported role of “identity building policies” – it maintains a national narrative of memory, which might be exclusive to minorities and their peculiar understanding of history. Lithuanians Poles, in this regard, represent a national minority, which is exposed to two conflicting national narratives of the common past – Polish and Lithuanian. As members of the Polish nation, their understanding of the common Polish-Lithuanian history is conditioned by the Polish historical narrative, acquired as part of the collective memory of the family and/or different minority organizations. On the other hand, they encounter Lithuanian historical narrative of the Polish-Lithuanian past throughout the secondary school history education, where the curriculum, even if taught in Polish, largely represents the Lithuanian point of view. The concept of collective memory is utilized to refer to collective representations of national memory (i.e. publicly articulated narratives and images of collective past in history textbooks) as well as to socially framed individual memories (i.e. historical memory of minority members, where individual remembering is framed by the social context of their identity). The thesis compares the official national historical narratives in Lithuania and Poland, as conveyed by the Polish and Lithuanian history textbooks. The consequent analysis of qualitative interviews with the Polish minority members in Lithuania offers insights into historical memory of Lithuanian Poles and its relation to the official Polish and Lithuanian national narratives of the common past. Qualitative content analysis is applied in both parts of the analysis. The narratives which emerge from the interview data could be broadly grouped into two segments. First, a more pronounced view on the past combines the following elements: i) emphasis on the value of multicultural and diverse past of Lithuania, ii) contestation of “Lithuanocentricity” of the Lithuanian narrative and iii) rejection of the term “occupation”, based on the cultural presuppositions – the dominant position of Polish culture and language in the Vilnius region, symbolic belonging and “Lithuanianness” of the local Poles. While the opposition to the term of “occupation” is in accord with the official Polish narrative conveyed by the textbooks, the former two elements do not neatly adhere to either Polish or Lithuanian textbook narratives. They should rather be considered as an expression of claims for inclusion of plural pasts into Lithuanian collective memory and hence as claims for symbolic enfranchisement into the Lithuanian “imagined community”. The second strand of views, on the other hand, does not exclude assertions about the historically dominant position of Polish culture in Lithuania, but at the same time places more emphasis on the political and historical continuity of the Lithuanian state and highlights a long-standing symbolic connectedness of Vilnius and Lithuania, thus, striking a middle way between the Polish and Lithuanian interpretations of the past.
Resumo:
Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.
Resumo:
Sanukitoid series intrusions can be found throughout the Archean Karelian Province of the Fennoscandian shield. All sanukitoids share the same controversial elemental characteristics: they have high content of incompatible elements such as K, Ba, and Sr as well as high content of the compatible elements Mg, Cr, and Ni, and high Mg#. This composition is explained by an enriched mantle wedge origin in a Neoarchean subduction setting. This study concentrates on sanukitoid intrusions and tonalite-trondhjemite-granodiorite series (TTGs) from Finnish part of the Karelian Province. The collected rock samples have been studied in the field and under microscope as well as for their whole-rock (including isotopes) and mineral compositions. The new data together with previously published analyses help us to better understand the petrogenesis, tectonic setting and reworking of the Archean rock units. TTGs from the Karelian Province form a voluminous series of granitoids and reworked migmatites. This study divides TTG series into two subgroups based on their elemental composition: low-HREE (heavy rare earth element) TTGs and high-HREE TTGs indicating pressure differences in their source. Sanukitoid series is a minor, divergent group of intrusions. These intrusions are variable sized, and the texture varies from even-grained to K-feldspar porphyritic. The elemental composition differentiates sanukitoids from more voluminous TTG groups, the SiO2 in sanukitoids varies to include series of gabbro, diorite, and granodiorite. U Pb age determinations from sanukitoid series show temporally limited emplacement between ~ 2745 2715 Ma after the main crust forming period in the area. Hafnium, neodymium, common lead, and oxygene isotopes indicate well homogenized characteristics. Recycled crust has made a variable, yet minor, contribution to sanukitoids, as evidenced by oxygene isotopes and inherited zircon cores. A proposed tectonic setting for the formation of the sanukitoid series is slab breakoff of oceanic lithosphere in subduction setting, with sanukitoids deriving from an enriched mantle wedge. The proposed setting explains some of the peculiar features of sanukitoids, such as their temporally limited occurrence and controversial elemental composition. Sanukitoids would occur after cessation of the regional growth of Archean crust, and they could be derived from mantle wedge previously enriched by melts and fluids from oceanic crust and sediments. A subsequent event during the Paleoproterozoic Svecofennian orogeny at ~1.9 Ga affected the appearance and microstructures of the rocks as well as caused redistribution of lead between minerals and whole rock. However, the deformation was not able to obliterate the original geochemical characteristics of these sanukitoids.
Resumo:
Hamiltonian systems in stellar and planetary dynamics are typically near integrable. For example, Solar System planets are almost in two-body orbits, and in simulations of the Galaxy, the orbits of stars seem regular. For such systems, sophisticated numerical methods can be developed through integrable approximations. Following this theme, we discuss three distinct problems. We start by considering numerical integration techniques for planetary systems. Perturbation methods (that utilize the integrability of the two-body motion) are preferred over conventional "blind" integration schemes. We introduce perturbation methods formulated with Cartesian variables. In our numerical comparisons, these are superior to their conventional counterparts, but, by definition, lack the energy-preserving properties of symplectic integrators. However, they are exceptionally well suited for relatively short-term integrations in which moderately high positional accuracy is required. The next exercise falls into the category of stability questions in solar systems. Traditionally, the interest has been on the orbital stability of planets, which have been quantified, e.g., by Liapunov exponents. We offer a complementary aspect by considering the protective effect that massive gas giants, like Jupiter, can offer to Earth-like planets inside the habitable zone of a planetary system. Our method produces a single quantity, called the escape rate, which characterizes the system of giant planets. We obtain some interesting results by computing escape rates for the Solar System. Galaxy modelling is our third and final topic. Because of the sheer number of stars (about 10^11 in Milky Way) galaxies are often modelled as smooth potentials hosting distributions of stars. Unfortunately, only a handful of suitable potentials are integrable (harmonic oscillator, isochrone and Stäckel potential). This severely limits the possibilities of finding an integrable approximation for an observed galaxy. A solution to this problem is torus construction; a method for numerically creating a foliation of invariant phase-space tori corresponding to a given target Hamiltonian. Canonically, the invariant tori are constructed by deforming the tori of some existing integrable toy Hamiltonian. Our contribution is to demonstrate how this can be accomplished by using a Stäckel toy Hamiltonian in ellipsoidal coordinates.
Resumo:
This study explores labour relations between domestic workers and employers in India. It is based on interviews with both employers and workers, and ethnographically oriented field work in Jaipur, carried out in 2004-2007. Combining development studies with gender studies, labour studies, and childhood studies, it asks how labour relations between domestic workers and employers are formed in Jaipur, and how female domestic workers trajectories are created. Focusing on female part-time maids and live-in work arrangements, the study analyses children s work in the context of overall work force, not in isolation from it. Drawing on feminist Marxism, domestic labour relations are seen as an arena of struggle. The study takes an empirical approach, showing class through empiria and shows how paid domestic work is structured and stratified through intersecting hierarchies of class, caste, gender, age, ethnicity and religion. The importance of class in domestic labour relations is reiterated, but that of caste, so often downplayed by employers, is also emphasized. Domestic workers are crucial to the functioning of middle and upper middle class households, but their function is not just utilitarian. Through them working women and housewives are able to maintain purity and reproduce class disctinctions, both between poor and middle classes and lower and upper middle classes. Despite commodification of work relations, traditional elements of service relationships have been retained, particularly through maternalist practices such as gift giving, creating a peculiar blend of traditional and market practices. Whilst employers of part-time workers purchase services in a segmented market from a range of workers for specific, traditional live-in workers are also hired to serve employers round the clock. Employers and workers grudgingly acknowledged their dependence on one another, employers seeking various strategies to manage fear of servant crime, such as the hiring of children or not employing live-in workers in dual-earning households. Paid domestic work carries a heavy stigma and provide no entry to other jobs. It is transmitted from mothers to daughters and working girls were often the main income providers in their families. The diversity of working conditions is analysed through a continuum of vulnerability, generic live-in workers, particularly children and unmarried young women with no close family in Jaipur, being the most vulnerable and experienced part-time workers the least vulnerable. Whilst terms of employment are negotiated informally and individually, some informal standards regarding salary and days off existed for maids. However, employers maintain that workings conditions are a matter of individual, moral choice. Their reluctance to view their role as that of employers and the workers as their employees is one of the main stumbling blocks in the way of improved working conditions. Key words: paid domestic work, India, children s work, class, caste, gender, life course
Resumo:
The National Curriculum Guidelines on Early Childhood Education and Care (ECEC) in Finland says that ECEC is developed holistically through observing children´s and the educator community´s activities and the ECEC environment. The background of this research was that assesment should be based on commonly agreed principles, which are recorded e.g. to unit-specific ECEC curriculum. The objective of this research was to investigate how unit-specific ECEC curriculums have descriped the physical indoor environment in day-care centres. According to the National Curriculum Guidelines on ECEC, there are four ways of acting that are peculiar to children: playing, physical activities, exploration and artistic experiences and self-expression. The descriptions of physical environment in unit-spesific curriculums were observed through above mentioned four ways of acting. In addition to that, the descriptions of four ways of acting were compared to each other, in order to find out, which are the main differencies and similarities in relation to physical ECEC environment. Research material was build on unit-specific ECEC curriculums from 18 day-care centres of Helsinki. Target of the research were the descriptions of physical indoor environment in curriculums.The method used in the research was theory-guided content analysis. The analyses were mainly qualitative. The descriptions of psysical environment varied widely both quantitatively and by substance. All curriculums contained mentions of playing and artistic experiences and self-expression, but mentions of physical activities and exploration were noticiably fewer. All four ways of acting were mentioned in research material in relation to premises and instruments. Also, principles related to the use of premises and instruments and other more common priciples were mentioned in relation to all ways of acting. Instead of that, children were not mentioned even once as an upholders or innovators of physical activities environment and children were mentioned only once regarding to exploration environment. All ways of acting included scenarios of e.g. that environment must provide possibilities of particular way of acting, and both materials and instruments must be available for children. Anyhow, research material did not include any principle or scenario that relates to physical environment that would have occurred in every unit-specific curriculum.
Resumo:
Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong 'banana cells'. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.