20 resultados para Size effects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of lying behavior to dairy cows and the feasible definition of lying has attracted many studies on the subject. Cattle show both behavioral and physiological stress responses when subjected to thwarting of their lying behavior. If cows are unable to lie down they later compensate for lost lying time when possible. Environmental factors such as housing and bedding systems have been noted to affect the time spent lying, but there is usually large variation in lying time between individuals. Internal factors such as the reproductive stage, age and health of cows affect their lying time and can cause variation. However, the effect of higher milk production on behavior has not previously been illuminated. The objective of this study was to provide data applicable for the improvement of resting conditions of cows. The preference of stall surface material, differences in normal behavior per unit time and various health measures were observed. The aim was to evaluate lying behavior and cow comfort on different stall bedding materials. In addition, the effect of milk yield on behavior was examined in a tie stall experiment. The preferences for surface materials were investigated in 5 experiments using 3 surface materials with bedding manipulations. According to the results, the cows preferred abundant straw bedding and soft rubber mats. However, they showed an aversion to sand bedding. Some individuals even refused to use stalls with sand when no organic bedding material was present. However, this study was unable to determine the reason for the avoidance, as neither the sand particle size nor thermal properties appeared critical. However, previous exposure to particular surface materials increased the preference for them. The amount of straw bedding was found to be an important factor affecting the preferences for stalls, and the lying time in stalls increased when the flooring softness was improved by applying straw or by installing elastic mats. Despite sand being the least preferred flooring material in preference tests, the health of legs improved during exposure to sand-floored stalls. Moreover cows using sand were cleaner than those that used straw stalls. Thus, sand bedding entailed some health benefits despite the contradictory results of preference tests, which more strongly reflected the perceptions of individual animals. Milk yield was observed to affect behavior by reducing the lying time, possibly due to factors other than longer duration of eating. High yielding cows seemed to intensify their lying bouts, as they were observed to lie with the neck muscles relaxed sooner after lying down than lower yielding cows. In conclusion, cows were found to prefer softer stall surface materials and organic bedding material. In addition, the lying time was reduced by a high milk yield, although the lying time seemed to be important for resting. Cows might differ in the needs for their lying environment. The management of dairy cows should eliminate any unnecessary prevention of lying, as even in tie-stalls high yielding cows seem to be affected by time constraints. Adding fresh bedding material to stalls increases the comfort of any stall flooring material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical properties provide valuable information about the nature and behavior of rocks and minerals. The changes in rock physical properties generate petrophysical contrasts between various lithologies, for example, between shocked and unshocked rocks in meteorite impact structures or between various lithologies in the crust. These contrasts may cause distinct geophysical anomalies, which are often diagnostic to their primary cause (impact, tectonism, etc). This information is vital to understand the fundamental Earth processes, such as impact cratering and associated crustal deformations. However, most of the present day knowledge of changes in rock physical properties is limited due to a lack of petrophysical data of subsurface samples, especially for meteorite impact structures, since they are often buried under post-impact lithologies or eroded. In order to explore the uppermost crust, deep drillings are required. This dissertation is based on the deep drill core data from three impact structures: (i) the Bosumtwi impact structure (diameter 10.5 km, 1.07 Ma age; Ghana), (ii) the Chesapeake Bay impact structure (85 km, 35 Ma; Virginia, U.S.A.), and (iii) the Chicxulub impact structure (180 km, 65 Ma; Mexico). These drill cores have yielded all basic lithologies associated with impact craters such as post-impact lithologies, impact rocks including suevites and breccias, as well as fractured and unfractured target rocks. The fourth study case of this dissertation deals with the data of the Paleoproterozoic Outokumpu area (Finland), as a non-impact crustal case, where a deep drilling through an economically important ophiolite complex was carried out. The focus in all four cases was to combine results of basic petrophysical studies of relevant rocks of these crustal structures in order to identify and characterize various lithologies by their physical properties and, in this way, to provide new input data for geophysical modellings. Furthermore, the rock magnetic and paleomagnetic properties of three impact structures, combined with basic petrophysics, were used to acquire insight into the impact generated changes in rocks and their magnetic minerals, in order to better understand the influence of impact. The obtained petrophysical data outline the various lithologies and divide rocks into four domains. Based on target lithology the physical properties of the unshocked target rocks are controlled by mineral composition or fabric, particularly porosity in sedimentary rocks, while sediments result from diverse sedimentation and diagenesis processes. The impact rocks, such as breccias and suevites, strongly reflect the impact formation mechanism and are distinguishable from the other lithologies by their density, porosity and magnetic properties. The numerous shock features resulting from melting, brecciation and fracturing of the target rocks, can be seen in the changes of physical properties. These features include an increase in porosity and subsequent decrease in density in impact derived units, either an increase or a decrease in magnetic properties (depending on a specific case), as well as large heterogeneity in physical properties. In few cases a slight gradual downward decrease in porosity, as a shock-induced fracturing, was observed. Coupled with rock magnetic studies, the impact generated changes in magnetic fraction the shock-induced magnetic grain size reduction, hydrothermal- or melting-related magnetic mineral alteration, shock demagnetization and shock- or temperature-related remagnetization can be seen. The Outokumpu drill core shows varying velocities throughout the drill core depending on the microcracking and sample conditions. This is similar to observations by Kern et al., (2009), who also reported the velocity dependence on anisotropy. The physical properties are also used to explain the distinct crustal reflectors as observed in seismic reflection studies in the Outokumpu area. According to the seismic velocity data, the interfaces between the diopside-tremolite skarn layer and either serpentinite, mica schist or black schist are causing the strong seismic reflectivities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background When we are viewing natural scenes, every saccade abruptly changes both the mean luminance and the contrast structure falling on any given retinal location. Thus it would be useful if the two were independently encoded by the visual system, even when they change simultaneously. Recordings from single neurons in the cat visual system have suggested that contrast information may be quite independently represented in neural responses to simultaneous changes in contrast and luminance. Here we test to what extent this is true in human perception. Methodology/Principal Findings Small contrast stimuli were presented together with a 7-fold upward or downward step of mean luminance (between 185 and 1295 Td, corresponding to 14 and 98 cd/m2), either simultaneously or with various delays (50–800 ms). The perceived contrast of the target under the different conditions was measured with an adaptive staircase method. Over the contrast range 0.1–0.45, mainly subtractive attenuation was found. Perceived contrast decreased by 0.052±0.021 (N = 3) when target onset was simultaneous with the luminance increase. The attenuation subsided within 400 ms, and even faster after luminance decreases, where the effect was also smaller. The main results were robust against differences in target types and the size of the field over which luminance changed. Conclusions/Significance Perceived contrast is attenuated mainly by a subtractive term when coincident with a luminance change. The effect is of ecologically relevant magnitude and duration; in other words, strict contrast constancy must often fail during normal human visual behaviour. Still, the relative robustness of the contrast signal is remarkable in view of the limited dynamic response range of retinal cones. We propose a conceptual model for how early retinal signalling may allow this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bile acids are important steroid-derived molecules essential for fat absorption in the small intestine. They are produced in the liver and secreted into the bile. Bile acids are transported by bile flow to the small intestine, where they aid the digestion of lipids. Most bile acids are reabsorbed in the small intestine and return to the liver through the portal vein. The whole recycling process is referred to as the enterohepatic circulation, during which only a small amount of bile acids are removed from the body via faeces. The enterohepatic circulation of bile acids involves the delicate coordination of a number of bile acid transporters expressed in the liver and the small intestine. Organic anion transporting polypeptide 1B1 (OATP1B1), encoded by the solute carrier organic anion transporter family, member 1B1 (SLCO1B1) gene, mediates the sodium independent hepatocellular uptake of bile acids. Two common SNPs in the SLCO1B1 gene are well known to affect the transport activity of OATP1B1. Moreover, bile acid synthesis is an important elimination route for cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme of bile acid production. The aim of this thesis was to investigate the effects of SLCO1B1 polymorphism on the fasting plasma levels of individual endogenous bile acids and a bile acid synthesis marker, and the pharmacokinetics of exogenously administered ursodeoxycholic acid (UDCA). Furthermore, the effects of CYP7A1 genetic polymorphism and gender on the fasting plasma concentrations of individual endogenous bile acids and the bile acid synthesis marker were evaluated. Firstly, a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the determination of bile acids was developed (Study I). A retrospective study examined the effects of SLCO1B1 genetic polymorphism on the fasting plasma concentrations of individual bile acids and a bile acid synthesis marker in 65 healthy subjects (Study II). In another retrospective study with 143 healthy individuals, the effects of CYP7A1 genetic polymorphism and gender as well as SLCO1B1 polymorphism on the fasting plasma levels of individual bile acids and the bile acid synthesis marker were investigated (Study III). The effects of SLCO1B1 polymorphism on the pharmacokinetics of exogenously administered UDCA were evaluated in a prospective genotype panel study including 27 healthy volunteers (Study IV). A robust, sensitive and simple HPLC-MS/MS method was developed for the simultaneous determination of 16 individual bile acids in human plasma. The method validation parameters for all the analytes met the requirements of the FDA (Food and Drug Administration) bioanalytical guidelines. This HPLC-MS/MS method was applied in Studies II-IV. In Study II, the fasting plasma concentrations of several bile acids and the bile acid synthesis marker seemed to be affected by SLCO1B1 genetic polymorphism, but these findings were not replicated in Study III with a larger sample size. Moreover, SLCO1B1 polymorphism had no effect on the pharmacokinetic parameters of exogenously administered UDCA. Furthermore, no consistent association was observed between CYP7A1 genetic polymorphism and the fasting plasma concentrations of individual bile acids or the bile acid synthesis marker. In contrast, gender had a major effect on the fasting plasma concentrations of several bile acids and also total bile acids. In conclusion, gender, but not SLCO1B1 or CYP7A1 polymorphisms, has a major effect on the fasting plasma concentrations of individual bile acids. Moreover, the common genetic polymorphism of CYP7A1 is unlikely to influence the activity of CYP7A1 under normal physiological conditions. OATP1B1 does not play an important role in the in vivo disposition of exogenously administered UDCA.