32 resultados para Significant wave height
Resumo:
Conventional invasive coronary angiography is the clinical gold standard for detecting of coronary artery stenoses. Noninvasive multidetector computed tomography (MDCT) in combination with retrospective ECG gating has recently been shown to permit visualization of the coronary artery lumen and detection of coronary artery stenoses. Single photon emission tomography (SPECT) perfusion imaging has been considered the reference method for evaluation of nonviable myocardium, but magnetic resonance imaging (MRI) can accurately depict structure, function, effusion, and myocardial viability, with an overall capacity unmatched by any other single imaging modality. Magnetocardiography (MCG) provides noninvasively information about myocardial excitation propagation and repolarization without the use of electrodes. This evolving technique may be considered the magnetic equivalent to electrocardiography. The aim of the present series of studies was to evaluate changes in the myocardium assessed with SPECT and MRI caused by coronary artery disease, examine the capability of multidetector computed tomography coronary angiography (MDCT-CA) to detect significant stenoses in the coronary arteries, and MCG to assess remote myocardial infarctions. Our study showed that in severe, progressing coronary artery disease laser treatment does not improve global left ventricular function or myocardial perfusion, but it does preserve systolic wall thickening in fixed defects (scar). It also prevents changes from ischemic myocardial regions to scar. The MCG repolarization variables are informative in remote myocardial infarction, and may perform as well as the conventional QRS criteria in detection of healed myocardial infarction. These STT abnormalities are more pronounced in patients with Q-wave infarction than in patients with non-Q-wave infarctions. MDCT-CA had a sensitivity of 82%, a specificity of 94%, a positive predictive value of 79%, and a negative predictive value of 95% for stenoses over 50% in the main coronary arteries as compared with conventional coronary angiography in patients with known coronary artery disease. Left ventricular wall dysfunction, perfusion defects, and infarctions were detected in 50-78% of sectors assigned to calcifications or stenoses, but also in sectors supplied by normally perfused coronary arteries. Our study showed a low sensitivity (sensitivity 63%) in detecting obstructive coronary artery disease assessed by MDCT in patients with severe aortic stenosis. Massive calcifications complicated correct assessment of the lumen of coronary arteries.
Resumo:
Gastric motility disorders, including delayed gastric emptying (gastroparesis), impaired postprandial fundic relaxation, and gastric myoelectrical disorders, can occur in type 1 diabetes, chronic renal failure, and functional dyspepsia (FD). Symptoms like upper abdominal pain, early satiation, bloating, nausea and vomiting may be related to gastroparesis. Diabetic gastroparesis is related to autonomic neuropathy. Scintigraphy is the gold standard in measuring gastric emptying, but it is expensive, requires specific equipment, and exposes patients to radiation. It also gives information about the intragastric distribution of the test meal. The 13C-octanoic acid breath test (OBT) is an alternative, indirect method of measuring gastric emptying with a stable isotope. Electrogastrography (EGG) registers the slow wave originating in the pacemaker area of the stomach and regulating the peristaltic contractions of the antrum. This study compares these three methods of measuring gastric motility in patients with type 1 diabetes, functional dyspepsia, and chronic renal failure. Currently no effective drugs for treating gastric motility disorders are available. We studied the effect of nizatidine on gastric emptying, because in preliminary studies this drug has proven to have a prokinetic effect due to its cholinergic properties. Of the type 1 patients, 26% had delayed gastric emptying of solids as measured by scintigraphy. Abnormal intragastric distribution of the test meal occurred in 37% of the patients, indicating impaired fundic relaxation. The autonomic neuropathy score correlated positively with the gastric emptying rate of solids (P = 0.006), but HbA1C, plasma glucose levels, or abdominal symptoms were unrelated to gastric emptying or intragastric distribution of the test meal. Gastric emptying of both solids and liquids was normal in all FD patients but abnormal intragastric distribution occurred in 38% of the patients. Nizatidine improved symptom scores and quality of life in FD patients, but not significantly. Instead of enhancing, nizatidine slowed gastric emptying in FD patients (P < 0.05). No significant difference appeared in the frequency of the gastric slow waves measured by EGG in the patients and controls. The correlation between gastric half-emptying times of solids measured by scintigraphy and OBT was poor both in type 1 diabetes and FD patients. According to this study, dynamic dual-tracer scintigraphy is more accurate than OBT or EGG in measuring gastric emptying of solids. Additionally it provides information about gastric emptying of liquids and the intragastric distribution of the ingested test meal.
Resumo:
Transport plays an important role in the distribution of long-lived gases such as ozone and water vapour in the atmosphere. Understanding of observed variability in these gases as well as prediction of the future changes depends therefore on our knowledge of the relevant atmospheric dynamics. This dissertation studies certain dynamical processes in the stratosphere and upper troposphere which influence the distribution of ozone and water vapour in the atmosphere. The planetary waves that originate in the troposphere drive the stratospheric circulation. They influence both the meridional transport of substances as well as parameters of the polar vortices. In turn, temperatures inside the polar vortices influence abundance of the Polar Stratospheric Clouds (PSC) and therefore the chemical ozone destruction. Wave forcing of the stratospheric circulation is not uniform during winter. The November-December averaged stratospheric eddy heat flux shows a significant anticorrelation with the January-February averaged eddy heat flux in the midlatitude stratosphere and troposphere. These intraseasonal variations are attributable to the internal stratospheric vacillations. In the period 1979-2002, the wave forcing exhibited a negative trend which was confined to the second half of winter only. In the period 1958-2002, area, strength and longevity of the Arctic polar vortices do not exhibit significant long-term changes while the area with temperatures lower than the threshold temperature for PSC formation shows statistically significant increase. However, the Arctic vortex parameters show significant decadal changes which are mirrored in the ozone variability. Monthly ozone tendencies in the Northern Hemisphere show significant correlations (|r|=0.7) with proxies of the stratospheric circulation. In the Antarctic, the springtime vortex in the lower stratosphere shows statistically significant trends in temperature, longevity and strength (but not in area) in the period 1979-2001. Analysis of the ozone and water vapour vertical distributions in the Arctic UTLS shows that layering below and above the tropopause is often associated with poleward Rossby wave-breaking. These observations together with calculations of cross-tropopause fluxes emphasize the importance of poleward Rossby wave breaking for the stratosphere-troposphere exchange in the Arctic.
Resumo:
In this dissertation we study the interaction between Saturn's moon Titan and the magnetospheric plasma and magnetic field. The method of research is a three-dimensional computer simulation model, that is used to simulate this interaction. The simulation model used is a hybrid model. Hybrid models enable individual tracking or tracing of ions and also take into account the particle motion in the propagation of the electromagnetic fields. The hybrid model has been developed at the Finnish Meteorological Institute. This thesis gives a general description of the effects that the solar wind has on Earth and other planets of our solar system. Planetary satellites can also have similar interactions with the solar wind but also with the plasma flows of planetary magnetospheres. Titan is clearly the largest among the satellites of Saturn and also the only known satellite with a dense atmosphere. It is the atmosphere that makes Titan's plasma interaction with the magnetosphere of Saturn so unique. Nevertheless, comparisons with the plasma interactions of other solar system bodies are valuable. Detecting charged plasma particles requires in situ measurements obtainable through scientific spacecraft. The Cassini mission has been one of the most remarkable international efforts in space science. Since 2004 the measurements and images obtained from instruments onboard the Cassini spacecraft have increased the scientific knowledge of Saturn as well as its satellites and magnetosphere in a way no one was probably able to predict. The current level of science on Titan is practically unthinkable without the Cassini mission. Many of the observations by Cassini instrument teams have influenced this research both the direct measurements of Titan as well as observations of its plasma environment. The theoretical principles of the hybrid modelling approach are presented in connection to the broader context of plasma simulations. The developed hybrid model is described in detail: e.g. the way the equations of the hybrid model are solved is shown explicitly. Several simulation techniques, such as the grid structure and various boundary conditions, are discussed in detail as well. The testing and monitoring of simulation runs is presented as an essential routine when running sophisticated and complex models. Several significant improvements of the model, that are in preparation, are also discussed. A main part of this dissertation are four scientific articles based on the results of the Titan model. The Titan model developed during the course of the Ph.D. research has been shown to be an important tool to understand Titan's plasma interaction. One reason for this is that the structures of the magnetic field around Titan are very much three-dimensional. The simulation results give a general picture of the magnetic fields in the vicinity of Titan. The magnetic fine structure of Titan's wake as seen in the simulations seems connected to Alfvén waves an important wave mode in space plasmas. The particle escape from Titan is also a major part of these studies. Our simulations show a bending or turning of Titan's ionotail that we have shown to be a direct result of the basic principles in plasma physics. Furthermore, the ion flux from the magnetosphere of Saturn into Titan's upper atmosphere has been studied. The modelled ion flux has asymmetries that would likely have a large impact in the heating in different parts of Titan's upper atmosphere.
Resumo:
The purpose of this research is to examine whether short-term communication training can have an impact on the improvement of communication capacity of working communities, and what are prerequisites for the creation of such capacity. Subjects of this research were short-term communication trainings aimed at the managerial and expert levels of enterprises and communities. The research endeavors to find out how communication trainings with an impact should be devised and implemented, and what this requires from the client and provider of the training service. The research data is mostly comprised of quantitative feed-back collected at the end of a training day, as well as delayed interviews. The evaluations have been based on a stakeholder approach, and those concerned were participants to the trainings, clients having commissioned the trainings and communication trainers. The principal method of the qualitative analysis is that of a data-driven content analysis. Two research instruments have been constructed for the analysis and for the presentation of the results: an evaluation circle for the purposes of a holistic evaluation and a development matrix for the structuring of an effective training. The core concept of the matrix is a carrier wave effect, which is needed to carry the abstractions from the training into concrete functions in the everyday life. The relevance of the results has been tested in a pilot organization. The immediate assessment and delayed evaluations gave a very differing picture of the trainings. The immediate feedback was of nearly commendable level, but the effects carried forward into the everyday situations of the working community were small and that the learning rarely was applied into practice. A training session that receives good feedback does not automatically result in the development of individual competence, let alone that of the community. The results show that even short-term communication training can promote communication competence that eventually changes the working culture on an organizational level, provided that the training is designed into a process and that the connections into the participants’ work are ensured. It is essential that all eight elements of the carrier wave effect are taken into account. The entire purchaser-provider -process must function while not omitting the contribution of the participants themselves. The research illustrates the so called bow tie -model of an effective communication training based on the carrier wave effect. Testing the results in pilot trainings showed that a rather small change in the training approach may have a signi¬ficant effect on the outcome of the training as well as those effects that are carried on into the working community. The evaluation circle proved to be a useful tool, which can be used while planning, executing and evaluating training in practice. The development matrix works as a tool for those producing the training service, those using the service as well as those deciding on the purchase of the service in planning and evaluating training that sustainably improves communication capacity. Thus the evaluation circle also works to support and ensure the long-term effects of short-term trainings. In addition to communication trainings, the tools developed for this research are useable for many such needs, where an organization is looking to improve its operations and profitability through training.
Resumo:
Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.
Resumo:
Leaf and needle biomasses are key factors in forest health. Insects that feed on needles cause growth losses and tree mortality. Insect outbreaks in Finnish forests have increased rapidly during the last decade and due to climate change the damages are expected to become more serious. There is a need for cost-efficient methods for inventorying these outbreaks. Remote sensing is a promising means for estimating forests and damages. The purpose of this study is to investigate the usability of airborne laser scanning in estimating Scots pine defoliation caused by the common pine sawfly (Diprion pini L.). The study area is situated in Ilomantsi district, eastern Finland. Study materials included high-pulse airborne laser scannings from July and October 2008. Reference data consisted of 90 circular field plots measured in May-June 2009. Defoliation percentage on these field plots was estimated visually. The study was made on plot-level and methods used were linear regression, unsupervised classification, Maximum likelihood method, and stepwise linear regression. Field plots were divided in defoliation classes in two different ways: When divided in two classes the defoliation percentages used were 0–20 % and 20–100 % and when divided in four classes 0–10 %, 10–20 %, 20–30 % and 30–100 %. The results varied depending on method and laser scanning. In the first laser scanning the best results were obtained with stepwise linear regression. The kappa value was 0,47 when using two classes and 0,37 when divided in four classes. In the second laser scanning the best results were obtained with Maximum likelihood. The kappa values were 0,42 and 0,37, correspondingly. The feature that explained defoliation best was vegetation index (pulses reflected from height > 2m / all pulses). There was no significant difference in the results between the two laser scannings so the seasonal change in defoliation could not be detected in this study.
Resumo:
Individuals with a particular variant of the gene phosphoglucose isomerase (Pgi ) have been shown to have superior dispersal capacity and fecundity in the Glanville fritillary butterfly (Melitaea cinxia), raising questions about the mechanisms that maintain polymorphism in this gene in the field. Here, we investigate how variation in the Pgi genotype affects female and male life history under controlled conditions. The most striking effect is the longer lifespan of genotypes with high dispersal capacity, especially in nonreproducing females. Butterflies use body reserves for somatic maintenance and reproduction, but
different resources (in thorax versus abdomen) are used under dissimilar conditions, with some interactions with the Pgi genotype. These results indicate life-history trade-offs that involve resource allocation and genotype!environment interactions, and these trade-offs are likely to contribute to the maintenance of Pgi polymorphism in the natural populations.
Resumo:
In this paper, we re-examine the relationship between overweight and labour market success, using indicators of individual body composition along with BMI (Body Mass Index). We use the dataset from Finland in which weight, height, fat mass and waist circumference are not self-reported, but obtained as part of the overall health examination. We find that waist circumference, but not weight or fat mass, has a negative effect on wages for women, whereas all measures of obesity have negative effects on women’s employment probabilities. For men, the only obesity measure that is significant for men’s employment probabilities is fat mass. One interpretation of our findings is that the negative wage effects of overweight on wages run through the discrimination channel, but that the negative effects of overweight on employment have more to do with ill health. All in all, measures of body composition provide a more refined picture about the effects of obesity on wages and employment.
Resumo:
Congenital long QT syndrome (LQTS) is a familial disorder characterized by ventricular repolarization that makes carriers vulnerable to malignant ventricular tachycardia and sudden cardiac death. The three main subtypes (LQT1, LQT2 and LQT3) constitute 95% of cases. The disorder is characterized by a prolonged QT interval in electrocardiograms (ECG), but a considerable portion are silent carriers presenting normal (QTc < 440 ms) or borderline (QTc < 470 ms) QT interval. Genetic testing is available only for 60-70% of patients. A number of pharmaceutical compounds also affect ventricular repolarization, causing a clinically similar disorder called acquired long QT syndrome. LQTS carriers - who already have impaired ventricular repolarization - are especially vulnerable. In this thesis, asymptomatic genotyped LQTS mutation carriers with non-diagnostic resting ECG were studied. The body surface potential mapping (BSPM) system was utilized for ECG recording, and signals were analyzed with an automated analysis program. QT interval length, and the end part of the T wave, the Tpe interval, was studied during exercise stress testing and an epinephrine bolus test. In the latter, T wave morphology was also analyzed. The effect of cetirizine was studied in LQTS carriers and also with supra- therapeutic dose in healthy volunteers. At rest, LQTS mutation carriers had a slightly longer heart rate adjusted QTc interval than healthy subjects (427 ± 31 ms and 379 ± 26 ms; p<0.001), but significant overlapping existed. LQT2 mutation carriers had a conspicuously long Tpe-interval (113 ± 24 ms; compared to 79 ± 11 ms in LQT1, 81 ± 17 ms in LQT3 and 78 ± 10 ms in controls; p<0.001). In exercise stress tests, LQT1 mutation carriers exhibit a long QT interval at high heart rates and during recovery, whereas LQT2 mutation carriers have a long Tpe interval at the beginning of exercise and at the end of recovery at low heart rates. LQT3 mutation carriers exhibit prominent shortening of both QT and Tpe intervals during exercise. A small epinephrine bolus revealed disturbed repolarization, especially in LQT2 mutation carriers, who developed prolonged Tpe intervals. A higher epinephrine bolus caused abnormal T waves with a different T wave profile in LQTS mutation carriers compared to healthy controls. These effects were seen in LQT3 as well, a group that may easily escape other provocative tests. In the cetirizine test, the QT and Tpe intervals were not prolonged in LQTS mutation carriers or in healthy controls. Subtype-specific findings in exercise test and epinephrine bolus test help to diagnose silent LQTS mutation carriers and to guide subtype-specific treatments. The Tpe interval, which signifies the repolarization process, seems to be a sensitive marker of disturbed repolarization along with the QT interval, which signifies the end of repolarization. This method may be used in studying compounds that are suspected to affect repolarization. Cetirizine did not adversely alter ventricular repolarization and would not be pro-arrhythmic in common LQT1 and LQT2 subtypes when used at its recommended doses.
Resumo:
Hong Kong was once a British colony and has been under the sovereignty of People’s Republic of China (PRC) since 1997. However, some of the unjust practices and colonial legacies are infiltrated into the development ideology as well as the social structures. The construction of intercity express railway project announced in 2008 causing the demolishment of Tsoi Yuen Tsuen, a “non-indigenous” agricultural village in Hong Kong, was one of the current examples. Tsoi Yuen village was established under the former colonial sovereignty sixty years ago. Approximately 450 populations were affected that they had to relocate their homeland involuntarily. However, these villagers were very attached to their homelands and were unwilling to move, and meanwhile they found that they were absent in the government’s consultation and decision-making process. Soon they began their resistance and demanded for “No Move! No Demolish!”. Their movement was strongly supported by a group of “Post-80s generation” and turned into the most important social movement of the city in recent years. In fact, demolition of Tsoi Yuen Village for city development is not an isolated case in the city. Meanwhile the situation is getting worse in Mainland China. I chose the case study of Tsoi Yuen Resistance from 2008 to 2011 for revelation of the complicated colonial history and postcolonial era of Hong Kong. I focused on discussing the Tsoi Yuen Resistance and the Post-80s movement, and how they have exposed the tension between top-down urban planning and development and public movements fighting for a more democratic process in choosing their way of living. Through the study of a village movement which as well as the rationale behind the Post-80s’ support, I hoped to illustrate how this movement has awaken a different sense of living for the new generations in the midst of the high-sounding urban development. It is an opportunity to examine Hong Kong’s colonial epoch in a different perspective: through studying the Tsoi Yuen Village, let them (subalterns) speak for themselves. Furthermore, the significance of this resistance, taking place eleven years after the handover to the PRC, is an important fact that I shall not miss in later discussion. Last but not least, during the resistance, advanced technology and social networks such as Facebook, Twitter, iPhone were used by Post 80s generation to spread the latest information in order to attract public’s concern and participation. Therefore, apart from studying Tsoi Yuen Resistance as a local social movement, I also regard it as a part of the global movement in perusing ecological lifestyle and civil society. How Post 80s’ generation manipulates the global idea in a local context will also be examined.
Resumo:
To enhance the utilization of the wood, the sawmills are forced to place more emphasis on planning to master the whole production chain from the forest to the end product. One significant obstacle to integrating the forest-sawmill-market production chain is the lack of appropriate information about forest stands. Since the wood procurement point of view in forest planning systems has been almost totally disregarded there has been a great need to develop an easy and efficient pre-harvest measurement method, allowing separate measurement of stands prior to harvesting. The main purpose of this study was to develop a measurement method for pine stands which forest managers could use in describing the properties of the standing trees for sawing production planning. Study materials were collected from ten Scots pine stands (Pinus sylvestris) located in North Häme and South Pohjanmaa, in southern Finland. The data comprise test sawing data on 314 pine stems, dbh and height measures of all trees and measures of the quality parameters of pine sawlog stems in all ten study stands as well as the locations of all trees in six stands. The study was divided into four sub-studies which deal with pine quality prediction, construction of diameter and dead branch height distributions, sampling designs and applying height and crown height models. The final proposal for the pre-harvest measurement method is a synthesis of the individual sub-studies. Quality analysis resulted in choosing dbh, distance from stump height to the first dead branch (dead branch height), crown height and tree height as the most appropriate quality characteristics of Scots pine. Dbh and dead branch height are measured from each pine sample tree while height and crown height are derived from dbh measures by aid of mixed height and crown height models. Pine and spruce diameter distribution as well as dead branch height distribution are most effectively predicted by the kernel function. Roughly 25 sample trees seems to be appropriate in pure pine stands. In mixed stands the number of sample trees needs to be increased in proportion to the intensity of pines in order to attain the same level of accuracy.
Resumo:
Wavelength tuning and stability characteristics of a singly resonant continuous-wave optical parametric oscillator (cw OPO) in the proximity of signal-idler degeneracy have been studied. The OPO is made singly resonant by using a Bragg grating as a spectral filter in the OPO cavity. The signal-idler frequency difference can be tuned from 0.5 to 7 THz, which makes the OPO suitable for cw THz generation by optical heterodyning. The operation of the OPO within this singly-resonant regime is characterized by a strong self-stabilization effect. A gradual transition to an unstable, doubly-resonant regime is observed for a signal-idler detuning smaller than ~ 0.5 THz.